CONCEPT: SYSTEMATIC APPROACH – ACID-BASE SYSTEMS

Strong Acids and Bases are considered ______ Electrolytes so they ionize completely in water.

• In general, the _____ the K_a the stronger the acid and the _____ the concentration of H⁺.

$$\begin{array}{ccc} & & & H_2O \\ \underline{\text{HCl (aq)}} & & \longrightarrow & \text{H}^+\text{ (aq)} + \underline{\text{Cl}}^-\text{ (aq)} \\ \textbf{0.200 M} & & \textbf{0.200 M} & \textbf{0.200 M} \end{array}$$

HCl
$$K_a = 10^{3.9} = 7.94 \times 10^3$$

HBr $K_a = 10^{5.8} = 6.31 \times 10^5$
HI $K_a = 10^{10.4} = 2.51 \times 10^{10}$
HNO₃ $K_a = 10^{1.4} = 25.1$
 H_2SO_4 $K_a = 10^3 = 1.0 \times 10^3$
HClO₄ $K_a = \infty$
HClO₃ $K_a = 10^0 = 1.0$

When calculating the pH of a solution we must take into consideration the concentration of the strong acid or base.

Concentration
$$\geq 10^{-6} \text{ M}$$

The concentrations of either of H⁺ and OH⁻ are significant enough to determine pH and pOH directly.

HNO₃ (aq)
$$\xrightarrow{\text{H}_2\text{O}}$$
 H⁺ (aq) + NO₃⁻ (aq) NaOH (aq) $\xrightarrow{\text{H}_2\text{O}}$ Na⁺ (aq) + OH⁻ (aq) 1.5 x 10⁻³ M 1.5 x 10⁻³ M 0.00075 M 0.00075 M

Concentration $\leq 10^{-8} \text{ M}$

The concentrations either of H⁺ and OH⁻ are too small to be significant and so pH equals _____.

HNO₃ (aq)
$$\xrightarrow{\text{H}_2\text{O}}$$
 H⁺ (aq) + NO₃⁻ (aq) NaOH (aq) $\xrightarrow{\text{H}_2\text{O}}$ Na⁺ (aq) + OH⁻ (aq) 8.4 x 10⁻¹¹ M 8.4 x 10⁻¹¹ M 7.0 x 10⁻⁹ M 7.0 x 10⁻⁹ M

Between
$$10^{-6}$$
 M to 10^{-8} M

The concentrations of H⁺ and OH⁻ must compete with the auto-ionization of water so a systematic approach is used.

PRACTICE: SYSTEMATIC APPROACH – ACID-BASE SYSTEMS CALCULATIONS 1

EXAMPLE: Determine the pH of a 3.5 x 10⁻⁸ M HBr.

PRACTICE: Determine the pH of a 6.7 x 10⁻⁸ M NaOH.