### **CONCEPT:** T-TEST

The t-test is used to test the \_\_\_\_\_ of two populations, one of which could be a standard.

• In order to test the similarities and differences between these two populations you can utilize the *t-score*.

Use the t score formula when we don't know the population standard deviation and have a sample size less than \_\_\_\_\_

$$t = \frac{x - \mu_0}{s / \sqrt{n}}$$
 = sample average = population average = sample standard deviation = number of samples

- The larger the t-score then the more the populations.
- The smaller the t-score then the more
  the populations.

### t-calculated (for equal variance)

$$t_{\text{Calculated}} = \frac{\left| \overline{x_1 - x_2} \right|}{s_{\text{pooled}}} \cdot \sqrt{\frac{n_1 n_2}{n_1 + n_2}} \qquad s_{\text{pooled}} = \sqrt{\frac{s_1^2 (n_1 - 1) + s_2^2 (n_2 - 1)}{n_1 + n_2 - 2}}$$

Degrees of freedom =  $n_1 + n_2 - 2$ 

### t-calculated (for unequal variance)

$$t-calculated = \frac{\left| \begin{matrix} - \\ x_1 - x_2 \end{matrix} \right|}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \\ \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \\ \end{array} \qquad \text{Degrees of freedom} = \begin{cases} \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2} + \frac{s_2^2}{n_2}\right)^2} \\ \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2} + \frac{s_2^$$

### t-calculated (paired data)

$$t_{\text{Calculated}} = \frac{\left| \overline{d} \right|}{s} \cdot \sqrt{n}$$

$$s = \sqrt{\frac{\sum (d_i - \overline{d})^2}{n - 1}}$$

# **CONCEPT:** T-TEST CALCULATIONS 1

**EXAMPLE:** A student wishing to calculate the amount of arsenic in cigarettes decides to run two separate methods in her analysis. The results (shown in ppm) are shown below:

| <u>Sample</u> | Method 1 | Method 2 |  |  |
|---------------|----------|----------|--|--|
| 1             | 110.5    | 104.7    |  |  |
| 2             | 93.1     | 95.8     |  |  |
| 3             | 63.0     | 71.2     |  |  |
| 4             | 72.3     | 69.9     |  |  |
| 5             | 121.6    | 118.7    |  |  |

Is there a significant difference between the two analytical methods under a 95% confidence interval?

### **CONCEPT:** T-TEST CALCULATIONS 2

**EXAMPLE:** You want to determine if concentrations of hydrocarbons in seawater measured by fluorescence are significantly different than concentrations measured by a second method, specifically based on the use of gas chromatography/flame ionization detection (GC-FID). You measure the concentration of a certified standard reference material (100.0 µM) with both methods seven (n=7) times. Specifically, you first measure each sample by fluorescence, and then measure the <u>same</u> sample by GC-FID. The concentrations determined by the two methods are shown below.

#### [fluorene (µM)]

| <u>Sample</u> | <u>Fluorescence</u> | GC-FID |  |  |
|---------------|---------------------|--------|--|--|
| 1             | 100.2               | 101.1  |  |  |
| 2             | 100.9               | 100.5  |  |  |
| 3             | 99.9                | 100.2  |  |  |
| 4             | 100.1               | 100.2  |  |  |
| 5             | 100.1               | 99.8   |  |  |
| 6             | 101.1               | 100.7  |  |  |
| 7             | 100.0               | 99.9   |  |  |

Calculate the appropriate t-statistic to compare the two sets of measurements.

## **CONCEPT:** T-TEST CALCULATIONS 3

**EXAMPLE:** A sample of size n = 100 produced the sample mean of 16. Assuming the population deviation is 3, compute a 95% confidence interval for the population mean.

**PRACTICE:** The average height of the US male is approximately 68 inches. What is the probability of selecting a group of males with average height of 72 inches or greater with a standard deviation of 5 inches?

| Z   | .00   | .01   | .02   | .03   | .04   | .05   | .06   | .07   | 0.8   | 0.9   |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0.0 | .5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 | .5319 | .5359 |
| 0.1 | .5398 | .5438 | .5478 | .5517 | .5557 | .5596 | .5636 | .5675 | .5714 | .5753 |
| 0.2 | .5793 | .5832 | .5871 | .5910 | .5948 | .5987 | .6026 | .6064 | .6103 | .6141 |
| 0.3 | .6179 | .6217 | .6255 | .6293 | .6331 | .6368 | .6406 | .6443 | .6480 | .6517 |
| 0.4 | .6554 | .6591 | .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844 | .6879 |
| 0.5 | .6915 | .6950 | .6985 | .7019 | .7054 | .7088 | .7123 | .7157 | .7190 | .7224 |
| 0.6 | .7257 | .7291 | .7324 | .7357 | .7589 | .7422 | .7454 | .7486 | .7517 | .7549 |
| 0.7 | .7580 | .7611 | .7642 | .7673 | .7704 | .7734 | .7764 | .7794 | .7823 | .7852 |
| 0.8 | .7881 | .7910 | .7939 | .7967 | .7995 | .8023 | .8051 | .8078 | .8106 | .8133 |
| 0.9 | .8159 | .8186 | .8212 | .8238 | .8264 | .8289 | .8315 | .8340 | .8365 | .8389 |
| 1.0 | .8413 | .8438 | .8461 | .8485 | .8508 | .8531 | .8554 | .8577 | .8599 | .8621 |

