CONCEPT: TITRATIONS

Gravimetric Analysis is a chemical analysis that involves determining the weight of an isolated product and *stoichiometry* is the calculations of compounds from a balanced chemical reaction.

We use this *Stoichiometric Chart* when we are given a balanced chemical equation with the known quantity of a compound or element and asked to find the unknown quantity of another compound or element.

EXAMPLE: Iron (III) can be oxidized by an acidic K₂Cr₂O₇ solution according to the net ionic equation below. How many microliters of a 0.250 M FeCl₂ are needed to completely react with 9.12 g of a compound containing 41.5% weight K₂Cr₂O₇?

$$Cr_2O_7^{2-} + 6 Fe^{2+} + 14 H^+ \longrightarrow 2 Cr^{3+} + 6 Fe^{3+} + 7 H_2O$$

CONCEPT: TITRATION CALCULATIONS 1

EXAMPLE 1: Magnesium reacts with HCl according to the reaction below. How many grams of 5.310% by weight of aqueous magnesium are required to provide a 25% excess to react with 75.0 mL of 0.0550 M HCl.

$$Mg(s) + 2 HCl(aq) \longrightarrow MgCl_2(aq) + H_2(g)$$

EXAMPLE 2: The amount of iron within an ore sample was determined by an oxidation-reduction titration using potassium permanganate, KMnO₄, as the titrant. A 0.5600 g sample of the ore was placed into acid and the newly freed Fe³⁺ was then reduced to Fe²⁺. The titration of this solution required 39.82 mL of 0.0315 M KMnO₄ to reach the end-point. Determine the mass percent of Fe₂O₃ in the sample.

$$MnO_4^- + 5 Fe^{2+} + 8 H^+ \longrightarrow Mn^{2+} + 5 Fe^{3+} + 4 H_2O$$

CONCEPT: TITRATION CALCULATIONS 2

EXAMPLE 1: A 0.4317 g sample of CaCO₃ (MW: 100.09 g/mol) is added to flask that also contained 12.50 mL of 1.530 M HBr.

$$CaCO_3$$
 (aq) + 2 HBr (aq) \longrightarrow $CaBr_2$ (aq) + H_2O (l) + CO_2 (g)

Additional water is then added to create a 250.0 mL of Solution A. Next 20.00 mL aliquot of solution A is taken and titrated with 0.0980 M NaOH. How many milliliters of NaOH were used?

NaOH (aq) + HBr (aq)
$$\longrightarrow$$
 H₂O (I) + NaBr (aq)

EXAMPLE 2: The amount of iron can be determined by using dichromate to oxidize Fe²⁺ to Fe³⁺. The equation for this process is shown below:

$$Cr_2O_7^{2-}$$
 (aq) + 6 Fe²⁺ (aq) + 14 H⁺ (aq) \longrightarrow 6 Fe³⁺ (aq) + 2 Cr³⁺ (aq) + 7 H₂O (I)

Determine the percent by mass of iron in 0.3500 g ore sample if the complete titration of Fe²⁺ required 20.7 mL of 0.0185 M $Cr_2O_7^{2-}$.

CONCEPT: TITRATION CALCULATIONS 3
EXAMPLE: What is the molar mass of a 0.750 g sample of a diprotic binary acid if it requires 50.0 mL of 0.440 M Ca(OH) ₂
to completely neutralize it?

PRACTICE: A 1.000 g sample of Na₂CO₃ (MW: 105.99 g/mol) is dissolved in enough water to make 200.0 mL of solution. A 25.00 mL aliquot required 32.18 mL of HCl to completely neutralize it. What is the molar concentration of HCl?

$$Na_2CO_3$$
 (aq) + 2 HCl (aq) \longrightarrow 2 KCl (aq) + $H_2O(l)$ + CO_2 (g)