CONCEPT: THE EQUILIBRIUM STATE

Most chemical reactions do not go to *completion*.

- _____ do not completely convert into _____ and reactant concentrations do not go down to _____.
- These reactions reach *chemical equilibrium*, in which the reaction moves in the forward and reverse direction.

$$\frac{3}{4}$$
 H₂ (g) + N₂ (g) $\frac{k_{\text{forward}}}{k_{\text{reverse}}}$ $\frac{2}{4}$ NH₃ (g)

$$K = \frac{k_{forward}}{k_{reverse}} = \frac{products}{reac tan ts}$$

• K is _____ than 1 so the ____ direction and ____ are favored.

• K is _____ than 1 so the ____ direction and ____ are favored.

• K is _____ than 1 so ____ direction and ____ are favored.

PRACTICE: THE EQUILIBRIUM STATE CALCULATIONS 1

EXAMPLE 1: For the following chemical reaction $N_2(g) + O_2(g) = 2 \text{ NO } (g)$, $K_c = 3.7 \times 10^{-5}$, $k_f = 2.5 \times 10^{-3}$ and $k_r = 67.57$. Addition of a catalyst increases the forward rate constant 1.8 x 10⁻¹. What is the new reverse rate constant after the addition of the catalyst?

EXAMPLE 2: Consider the following reactions at 25°C:

<u>Reaction</u> <u>Kc</u>

 $2 \text{ NO } (g) \Rightarrow N_2(g) + O_2(g)$ 1×10^{30}

 $2 H_2O(g) \Rightarrow 2 H_2(g) + O_2(g)$ 5×10^{-82}

 $2 \text{ CO } (g) + O_2(g) \Rightarrow 2 \text{ CO}_2(g)$ 3×10^{91}

Which compound is most likely to dissociate and give O₂ (g) at 25°C?

a) CO₂

b) NO

c) CO

d) H₂O

PRACTICE: Write the equilibrium expression for the following reaction.

PRACTICE: THE EQUILIBRIUM STATE CALCULATIONS 2

EXAMPLE 1: When reaction 1 and 2 below are added together, the result is reaction 3.

1)
$$H_2O(I) + HNO_2(aq) \longrightarrow H_3O^+(aq) + NO_2^-(aq)$$
 $K_1 = 4.50 \times 10^{-4}$

$$K_1 = 4.50 \times 10^{-4}$$

2)
$$H_3O^+(aq) + OH^-(aq) = 2 H_2O(I)$$

$$K_2 = 1.00 \times 10^{14}$$

3)
$$HNO_2(aq) + OH^-(aq) \longrightarrow NO_2^-(aq) + H_2O(I)$$
 $K_3 = ?$

$$K_3 = ?$$

Find the equilibrium constant, K_3 .

A)
$$4.50 \times 10^{-18}$$
 B) 2.22×10^{17} C) 4.50×10^{10}

B)
$$2.22 \times 10^{17}$$

C)
$$4.50 \times 10^{10}$$

EXAMPLE 2: What is the equilibrium constant for the reaction

$$NH_3(aq) + H_3O^+(aq) \Rightarrow NH_4^+(aq) + H_2O(I)$$

Given the following information

$$NH_3(aq) + H_2O(I) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$
 $K_c = 1.8x10^{-5}$

$$4H_2O(I) \Rightarrow 2OH^-(aq) + 2H_3O^+(aq)$$
 $K_c = 1x10^{-28}$

$$K_c = 1x10^{-28}$$