CONCEPT: Ka AND Kb OF COMPOUNDS Associated with any weak acid or weak base is a K_a or K_b value respectively. - K_a represents the _____ dissociation constant and it measures the strength of weak acids. - K_b represents the _____ dissociation constant and it measures the strength of weak bases. In general, the _____ the K_a the ____ the pK_a then the stronger the acid and ____ the concentration of H⁺. Weak acids possess K_a values _____ 1, while weak bases possess K_b values _____ 1. The equilibrium expressions of K_a and K_b are the same as other equilibrium constants you've seen. Weak Acids: HA (aq) + H₂O (I) $$=$$ A - (aq) + H₃O⁺ (aq) $=$ $\frac{\text{Products}}{\text{Re ac tan ts}} = \frac{[A^-][H_3O^+]}{[HA]}$ Weak Bases: $$A^-$$ (aq) + H_2O (I) \longrightarrow HA (aq) + OH^- (aq) $K_b = \frac{Pr \ oducts}{Re \ ac \ tan \ ts} = \frac{[HA][OH^-]}{[A^-]}$ K_a and K_b are connected by the following equation: $$K_{W} = K_{a} \cdot K_{b}$$ Recall that at 25 °C, Kw the ion-product constant of water equals ______ **EXAMPLE:** Consider two aqueous solutions of equal concentration. Which statement is true? chlorous acid (HClO2, $$K_a$$ = 1.1 x10 $^{\text{-}2}$) and phenol (HC6H5O, K_a = 1.3 x10 $^{\text{-}10})$ - a) HClO₂ produces more [H₃O⁺] than HC₆H₅O - b) HClO₂ is basic compared with HC₆H₅O - c) HClO₂ produces less [H₃O⁺] than HC₆H₅O - d) HClO₂ is a strong acid - e) CIO₂- produces more [OH-] than C₆H₅O- ## PRACTICE: Ka AND Kb OF COMPOUNDS CALCULATIONS 1 **EXAMPLE 1:** Which of the following compounds has the strongest conjugate acid? - a) $C_2H_5NH_2$ (K_b = 5.6 x 10⁻⁴) - b) H_2NNH_2 ($K_b = 1.3 \times 10^{-6}$) - c) NH_3 $(K_b = 1.75 \times 10^{-5})$ - d) $HONH_2$ ($K_b = 1.1 \times 10^{-8}$) **EXAMPLE 2:** At 0 °C, the ion product constant of water is 1.2x10⁻¹⁵. The pH of pure water at this temperature is: - a) 6.88 - b) 7.00 - c) 7.46 - d) 7.56 **PRACTICE:** (CH₃)₂NH is a weak base. Which equilibrium corresponds to the acid dissociation constant K_a for (CH₃)₂NH₂+? - a) $(CH_3)_2NH$ (aq) + H_2O (I) \rightleftharpoons $(CH_3)_2N^+$ (aq) + H_3O^+ (aq) - b) $(CH_3)_2NH_2^+$ (aq) + H_3O^+ (aq) \rightleftharpoons $(CH_3)_2NH$ (aq) + H_2O (aq) - c) $(CH_3)_2NH_2^+$ (aq) + H_2O (I) \rightleftharpoons $(CH_3)_2NH$ (aq) + H_3O^+ (aq) - d) $(CH_3)_2NH_2^+$ (aq) + OH^- (aq) \rightleftharpoons $(CH_3)_2NH$ (aq) + H_2O (aq) - e) $(CH_3)_2NH_2^+$ (aq) \rightleftharpoons $(CH_3)_2NH$ (aq) + H^+ (aq)