CONCEPT: Ka AND Kb OF COMPOUNDS

Associated with any weak acid or weak base is a K_a or K_b value respectively.

- K_a represents the _____ dissociation constant and it measures the strength of weak acids.
- K_b represents the _____ dissociation constant and it measures the strength of weak bases.

In general, the _____ the K_a the ____ the pK_a then the stronger the acid and ____ the concentration of H⁺.

Weak acids possess K_a values _____ 1, while weak bases possess K_b values _____ 1.

The equilibrium expressions of K_a and K_b are the same as other equilibrium constants you've seen.

Weak Acids: HA (aq) + H₂O (I)
$$=$$
 A - (aq) + H₃O⁺ (aq) $=$ $\frac{\text{Products}}{\text{Re ac tan ts}} = \frac{[A^-][H_3O^+]}{[HA]}$

Weak Bases:
$$A^-$$
 (aq) + H_2O (I) \longrightarrow HA (aq) + OH^- (aq) $K_b = \frac{Pr \ oducts}{Re \ ac \ tan \ ts} = \frac{[HA][OH^-]}{[A^-]}$

K_a and K_b are connected by the following equation:

$$K_{W} = K_{a} \cdot K_{b}$$

Recall that at 25 °C, Kw the ion-product constant of water equals ______

EXAMPLE: Consider two aqueous solutions of equal concentration. Which statement is true?

chlorous acid (HClO2,
$$K_a$$
 = 1.1 x10 $^{\text{-}2}$) and phenol (HC6H5O, K_a = 1.3 x10 $^{\text{-}10})$

- a) HClO₂ produces more [H₃O⁺] than HC₆H₅O
- b) HClO₂ is basic compared with HC₆H₅O
- c) HClO₂ produces less [H₃O⁺] than HC₆H₅O
- d) HClO₂ is a strong acid
- e) CIO₂- produces more [OH-] than C₆H₅O-

PRACTICE: Ka AND Kb OF COMPOUNDS CALCULATIONS 1

EXAMPLE 1: Which of the following compounds has the strongest conjugate acid?

- a) $C_2H_5NH_2$ (K_b = 5.6 x 10⁻⁴)
- b) H_2NNH_2 ($K_b = 1.3 \times 10^{-6}$)
- c) NH_3 $(K_b = 1.75 \times 10^{-5})$
- d) $HONH_2$ ($K_b = 1.1 \times 10^{-8}$)

EXAMPLE 2: At 0 °C, the ion product constant of water is 1.2x10⁻¹⁵. The pH of pure water at this temperature is:

- a) 6.88
- b) 7.00
- c) 7.46
- d) 7.56

PRACTICE: (CH₃)₂NH is a weak base. Which equilibrium corresponds to the acid dissociation constant K_a for (CH₃)₂NH₂+?

- a) $(CH_3)_2NH$ (aq) + H_2O (I) \rightleftharpoons $(CH_3)_2N^+$ (aq) + H_3O^+ (aq)
- b) $(CH_3)_2NH_2^+$ (aq) + H_3O^+ (aq) \rightleftharpoons $(CH_3)_2NH$ (aq) + H_2O (aq)
- c) $(CH_3)_2NH_2^+$ (aq) + H_2O (I) \rightleftharpoons $(CH_3)_2NH$ (aq) + H_3O^+ (aq)
- d) $(CH_3)_2NH_2^+$ (aq) + OH^- (aq) \rightleftharpoons $(CH_3)_2NH$ (aq) + H_2O (aq)
- e) $(CH_3)_2NH_2^+$ (aq) \rightleftharpoons $(CH_3)_2NH$ (aq) + H^+ (aq)