CONCEPT: THE NATURE OF LIGHT Visible light represents a small portion of the continuum of radiant energy known as ______. Radio: _____ Microwave: _____ Infrared: _____ Visible: ____ **Atomic & Molecular Transitions** Ultraviolet: _____X-Rays: _____ γ-Rays: _____ The visible light spectrum ranges from _____ to ____ . Its wave properties of electromagnetic radiation are described by two independent variables: _____(v, Greek mu) is the number of waves you have per second and is expressed in units of _____ or ____. $(\lambda, Greek lambda)$ is the distance from one crest of a wave to the other and is expressed in units of _____. ## Plane-polarized electromagnetic radiation: ## **CONCEPT: PROPERTIES OF LIGHT** The speed of a wave, is the product of ν and λ . In a vacuum, all forms of electromagnetic radiation travel at $2.998 \times 10^8 \frac{m}{s}$ $$c = v \cdot \lambda$$ The physicists Max Planck and Albert Einstein theorized that light was made of small "packets" of electromagnetic energy, called ______ and the energy of a single photon could be calculated by: $$\Delta E = h \cdot v = h \cdot \tilde{v}$$ • Planck's constant is represented by the variable of h and is equal to 6.626 x 10⁻³⁴ J · s. **EXAMPLE 1:** Calculate the wavelength (in nm) of the red light emitted by a neon sign with a frequency of 4.16 ×10⁸ MHz. **EXAMPLE 2:** What is the energy, in joules, of a mole of photons associated with visible light of wavelength 493 nm? | PRACTICE: PROPERTIES OF LIGHT CALCULATIONS 1 | |--| | EXAMPLE 1: A laser pulse produces 1.242 kJ of energy. It was experimentally determined that the pulse contains 3.50 x 10 ²² photons. Determine the wavelength of light (in meters) emitted by one photon. | | EXAMPLE 2: How much total energy (in μ J/mol) would it take to remove the electrons from a mole of hydrogen atoms? The ionization energy for a hydrogen atom is 2.178 x 10 ⁻¹⁸ J. | | PRACTICE: A low-pressure mercury-vapor lamp has a characteristic emission line at 253 nm. Knowing that this lamp is putting out 11.8 watts of light energy, how many mercury atoms are emitted per second during operation? |