CONCEPT: POLYPROTIC ACIDS

Our understanding of diprotic acids and bases can be used to understand polyprotic acids and bases.

For polyprotic acids _____ their equations can be illustrated by:

$$H_3A (aq) + H_2O (I)$$
 = $H_2A^- (aq) + H_3O^+ (aq)$ $K_{a1} = \frac{Pr \ oducts}{Re \ ac \ tan \ ts} = \frac{Pr \ oducts}{Re \ ac \ tan \ ts}$

$$H_2A^-$$
 (aq) + H_2O (I) $=$ HA^{2-} (aq) + H_3O^+ (aq) $K_{a2} = \frac{Pr \ oducts}{Re \ ac \ tan \ ts} =$

$$HA^{2-}$$
 (aq) + H_2O (I) $=$ A^{3-} (aq) + H_3O^+ (aq) $K_{a3} = \frac{Pr \text{ oducts}}{Re \text{ actants}} =$

For polyprotic bases _____ their equations can be illustrated by:

$$A^{3-}$$
 (aq) + H_2O (I) \longrightarrow HA^{2-} (aq) + OH^- (aq) $K_{b1} = \frac{Pr \ oducts}{Re \ ac \ tan \ ts} =$

$$HA^{2-}$$
 (aq) + H_2O (I) $=$ H_2A^- (aq) + OH^- (aq) $K_{b2} = \frac{Pr \text{ oducts}}{Re \text{ actants}} =$

$$H_2A^-(aq) + H_2O(I)$$
 \longrightarrow $H_3A(aq) + OH^-(aq)$ $K_{b3} = \frac{Pr \ oducts}{Re \ ac \ tan \ ts} =$

As a result of these equations for polyprotic acids and bases the relationship between K_a and K_b will be:

$$\mathbf{K}_{a1} \cdot \mathbf{K}_{b3} = \mathbf{K}_{w}$$

$$K_{a2} \cdot K_{b2} = K_{w}$$

$$\mathbf{K}_{a3} \cdot \mathbf{K}_{b1} = \mathbf{K}_{w}$$

When dealing with polyprotic acids:

- H₃A can be treated as a monoprotic acid and we use _____ can be used to find pH.
- A³⁻ represents the basic form and we use _____ can be used to find pH.

PRACTICE: POLYPROTIC ACID CALCULATIONS 1

EXAMPLE 1: Calculate the equilibrium concentrations of H₃PO₄, H₂PO₄⁻, HPO₄²-, PO₄³-, and H₃O⁺ for 0.35 M H₃PO₄.

 $Ka_1 = 7.2 \times 10^{-3}$, $Ka_2 = 6.3 \times 10^{-8}$, and $Ka_3 = 4.2 \times 10^{-13}$.

PRACTICE: POLYPROTIC ACID CALCULATIONS 2

EXAMPLE 1: Determine the pH of 0.250 M sodium hydrogen phosphate, Na₂HPO₄. Phosphoric acid, H₃PO₄, contains $K_{a1} = 7.5 \times 10^{-3}$, $K_{a2} = 6.2 \times 10^{-8}$ and $K_{a3} = 4.2 \times 10^{-13}$.

EXAMPLE 2: Determine the pH of 0.150 M citric acid, $H_3C_6H_5O_7$. It possesses $K_{a1} = 7.4 \times 10^{-4}$, $K_{a2} = 1.7 \times 10^{-5}$ and $K_{a3} = 4.0 \times 10^{-7}$.