CONCEPT: ELECTROLYSIS

Electrolysis deals with passing an electrical current through a substance in order to produce chemical changes.

• The use of outside energy is indicative of a non-spontaneous reaction.

The passing of an electrical current through water helps to generate its standard components:

$$2 H_2O(1) \rightarrow O_2(g) + 2 H_2(g)$$

Electrical Current

The units for electrical current are in _____ (A):

moles of electrons

The moles of electrons within a reaction are determined by:

Ohm's Law

The Ohmic potential, E, is the voltage necessary to overcome resistance, R, when the current, I, is flowing:

Overpotential is the voltage required to overcome the activation energy for a reaction at a given electrode.

Concentration polarization occurs when there is a difference in the concentrations of reactants and products on the surface of electrodes when compared to the solution.

Electrolysis is made more difficult by ohmic potential, overpotential and concentration polarization.

$$E_{Cell} = E_{Cathode} - E_{Anode} - E_{Ohmic} - Overpotentials$$

PRACTICE: ELECTROLYSIS CALCULATIONS 1

EXAMPLE 1: Aluminum can be electroplated at the cathode of an electrolysis cell by the half-reaction:

$$Al^{3+}$$
 (aq) + 3 e - \rightarrow Al (s)

How much time would it take for 825 mg of aluminum to be plated at a current of 4.1 A?

EXAMPLE 2: In the electrolysis of molecular iodine to iodide ions for 0.15 M NaI solution containing 4.2 x 10^{-4} M I₂ at a pH = 6.00 with P_{O_2} = 1.25 bar, calculate the voltage needed to drive the reaction.

$$O_2(g) + 4 H^+(aq) + 4 e^- \rightarrow 2 H_2O(l)$$
 $E_+^0 = -0.41 V$

$$I_2 (aq) + 2e^- \rightarrow 2I^- (aq)$$
 $E_-^0 = 0.54 \text{ V}$

PRACTICE: During electrolysis the concentration of I_2 increases to 8.3 x 10^{-3} M, while all other concentrations remain unchanged. If the electrical resistance is 1.8 ohms, the current is 71 mA, the anode overpotential is 0.013 V and the cathode overpotential is 0.115 V, what is the voltage needed?

CONCEPT: ELECTRICAL CURRENT

EXAMPLE 1: Gold can be plated out of a solution containing Au³⁺ based on the following half reaction:

a) What mass of gold is plated by a 41 minute flow of 6.8 A current?

EXAMPLE 2: A solution of Mn⁺⁵ is used to plate out Mn in an electrochemical cell. If a total of 1.13 g of Mn is plated out in a total time of 1600 seconds, what was the electrical current used? (**MW of Mn is 54.94 g/mol**)

PRACTICE: ELECTRIC CURRENT (CALCULATIONS 1)
EXAMPLE: If steady current of 15 amperes is provided by a stable voltage of 12 Volts for 600 seconds, answer each of the following questions.
a) Calculate the total charge that passes through the circuit in this time.
b) Calculate the total number of moles of electrons that pass through the circuit in this time.
c) Calculate the total amount of energy that passes through the circuit in this time.
d) Calculate the <u>power</u> that the battery provides during this process.