CONCEPT: STANDARD POTENTIALS

Voltage (E) represents the amount of work done in an electrochemical cell as electrons travel from one electrode to another.

Reduction Half-Reactions	E° (V)
$F_2(g) + 2e^- \rightleftharpoons 2F^ O_3(g) + 2H^+ + 2e^- \rightleftharpoons O_2(g) + H_2O$	2.890 2.075
$MnO_4^- + 8H^+ + 5e^- \rightleftharpoons Mn^{2+} + 4H_2O$	1.507
$Ag^+ + e^- \rightleftharpoons Ag (s)$	0.799
Cu ²⁺ + 2e ⁻ ⇌ Cu (s)	0.339
2H ⁺ + 2e ⁻ ⇌ H ₂ (g)	0.000
Cd ²⁺ + 2e ⁻ ⇌ Cd (s)	-0.402
K⁺ + e⁻ ⇌ K (s) Li⁺ + e⁻ ⇌ Li (s)	-2.936 -3.040

When combining two half-cell reactions together the cell potential for the total net reaction is given (when the concentrations approach unity) by:

$$E_{Cell} = E_{+} - E_{-}$$
 $E_{+} = Represents the$ electrode. $E_{-} = Represents the$ electrode.

EXAMPLE: Determine the electric potential that results from the given galvanic cell.

PRACTICE: STANDARD POTENTIALS CALCULATIONS 1

EXAMPLE 1: Use the standard half-cell potentials listed below to calculate the standard cell potential for the following reaction occurring in an electrochemical cell at 25°C. Assume the concentrations have approached unity.

$$3 \text{ Cl}_2(g) + 2 \text{ Fe (s)} \longrightarrow 6 \text{ Cl}^-(aq) + 2 \text{ Fe}^{3+}(aq)$$

$$Cl_2(g) + 2 e^- \longrightarrow 2 \text{ Cl}^-(aq) \qquad \qquad E^\circ = +1.396 \text{ V}$$

$$Fe^{3+}(aq) + 3 e^- \longrightarrow Fe(s) \qquad \qquad E^\circ = -0.040 \text{ V}$$

EXAMPLE 2: For the a voltaic cell with the overall reaction:

$$Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$$
 $E^{\circ}_{cell} = 1.10 \text{ V}$

Given that the standard reduction potential of Zn^{2+} to Zn (s) is -0.762 V, calculate the standard reduction potential for:

$$Cu^{2+}(aq) + 2 e^{-}$$
 — Cu (s)