CONCEPT: STANDARD CELL POTENTIAL & THE EQUILIBRIUM CONSTANT

Galvanic and voltaic cells are able to produce electricity because they are not yet at equilibrium.

• Recall that the chemical reaction will eventually reach equilibrium and then Q = K.

$$E_{\text{Cell}} = E_{\text{Cell}}^{\circ} - \frac{0.05916 \text{ V}}{n} log Q \ \, \rightarrow \ \, 0 = E_{\text{Cell}}^{\circ} - \frac{0.05916 \text{ V}}{n} log K \ \, \rightarrow \ \, E_{\text{Cell}}^{\circ} = \frac{0.05916 \text{ V}}{n} log K$$

Once we establish the correlation between the cell potential and the equilibrium constant we can reformat the equation:

The relationship between the cell potential, equilibrium constant and Gibbs Free Energy can be seen as:

PRACTICE: STANDARD CELL POTENTIAL & THE EQUILIBRIUM CONSTANT CALCULATIONS 1

EXAMPLE 1: Determine the equilibrium constant K for the following reaction:

$$Au^{+}$$
 (aq) + Ce (s) \leftarrow Ce³⁺ (aq) + Au (s)

The half reactions are determined as:

$$Au^+$$
 (aq) + e $\overline{}$ Au (s)

$$E^{\circ} = 1.690 \text{ V}$$

$$Ce^{3+}$$
 (aq) + 3 e - \longrightarrow Ce (s) $E^{\circ} = -2.336 \text{ V}$

$$E^{\circ} = -2.336 \text{ V}$$

EXAMPLE 2: From the two half reactions provided the equilibrium constant is calculated as 6.79 x 10³⁰.

$$ClO(g) + e^{-} \longrightarrow ClO^{-}(aq)$$
 $E_{+}^{o} = ?$

$$E_{+}^{o} = ?$$

Bi (s)
$$\longrightarrow$$
 Bi³⁺(aq) + 3 e⁻ E_{-}° = 0.308 V

$$E_{-}^{o} = 0.308 \text{ V}$$

Determine the standard cell potential for:

$$ClO(g) + e^{-} \longrightarrow ClO^{-}(aq)$$
 $E_{+}^{o} = ?$

$$E_{\perp}^{o} = ?$$