
CONCEPT: POTENTIOMETRY

Potentiometry uses electrodes to measure voltages that also provide vital chemical information on their solutions.

- The difference in potential between the two electrodes provides an analysis for the composition of the analyte.
- The measurement of the voltage at an electrode relative to the reference is done in the absence of current flow.

 $E_{Cell} = E_{Ind} - E_{Ref} + E_{j}$ Reference Electrode | Salt Bridge | Analyte Solution | Indicator Electrode

 E_{Ind}

The half-cell reactions are given as:

AgCl (s) +
$$e^{-}$$
 \longrightarrow Ag (s) + Cl⁻ $E_{-}^{\circ} = 0.222 \text{ V}$
Fe³⁺ (aq) + e^{-} \longrightarrow Fe²⁺ (aq) $E_{-}^{\circ} = 0.771 \text{ V}$

The Nernst equation provides a mathematical relationship between the electrode's potential and an analyte's reduced and oxidized forms.

• The difference in potential is based on only one of the half-cell concentrations.

$$E_{+} = E_{+}^{\circ} - \frac{0.05916 \text{ V}}{\text{n}} \log \left(\frac{[\text{Fe}^{2+}]}{[\text{Fe}^{3+}]} \right) = 0.771 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} \log \left(\frac{[\text{Fe}^{2+}]}{[\text{Fe}^{3+}]} \right) \\ E_{-} = E_{-}^{0} - \frac{0.05916 \text{ V}}{\text{n}} \log [\text{Cl}^{-}] = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} \log [\text{Cl}^{-}] = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} \log [\text{Cl}^{-}] = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} \log [\text{Cl}^{-}] = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} \log [\text{Cl}^{-}] = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} \log [\text{Cl}^{-}] = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} \log [\text{Cl}^{-}] = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} \log [\text{Cl}^{-}] = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} \log [\text{Cl}^{-}] = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} \log [\text{Cl}^{-}] = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} \log [\text{Cl}^{-}] = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} \log [\text{Cl}^{-}] = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} \log [\text{Cl}^{-}] = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} \log [\text{Cl}^{-}] = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} \log [\text{Cl}^{-}] = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} \log [\text{Cl}^{-}] = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} \log [\text{Cl}^{-}] = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} \log [\text{Cl}^{-}] = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} \log [\text{Cl}^{-}] = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} \log [\text{Cl}^{-}] = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} \log [\text{Cl}^{-}] = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} \log [\text{Cl}^{-}] = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} = 0.222 \text{ V} - \frac{0.05916 \text{ V}}{1 \text{ mole } \text{e}^{-}} = 0.222 \text{ V} - \frac{0.05916 \text{ V}}$$