CONCEPT: IONIC STRENGTH Consider the dissociation of silver bromide, AgBr, in purified water. AgBr (s) $$=$$ Ag⁺ (aq) + Br⁻ (aq) $K_{sp} = 1.34 \times 10^{-12}$ Adding 0.10 M NaBr or 0.25 M AgC₂H₃O₂ cause the overall solubility of AgBr to _____ as a result of the _____. AgBr (s) $$\longrightarrow$$ Ag+ (aq) + Br- (aq) Adding 0.01 M NaClO₄ causes the overall solubility of AgBr to _____ as a result of the *ionic strength*, which is just a measurement of all the ions in the aqueous solution. AgBr (s) $$\longrightarrow$$ Ag⁺ (aq) + Br⁻ (aq) lonic strength represents interactions between the ions in water and the ions of a solution. $$\mu = \frac{1}{2} \sum c_i z_i^2 = \frac{1}{2} (c_1 z_1^2 + c_2 z_2^2 + \dots)$$ **EXAMPLE:** Calculate the ionic strength of the following ionic compound. 0.010 M CuSO₃ | CONCEPT: IONIC STRENGTH CALCULATIONS | |--| | EXAMPLE 1: Calculate the ionic strength for the following ionic compound. | | 0.030 M Al ₂ (CO ₃) ₃ | | | | | | | | | | | | EXAMPLE 2: What is the ionic strength of a solution that is 0.1 M Na ₃ PO ₄ and 0.05 M Na ₂ HPO ₄ ? | | | | | | | | | | | | PRACTICE: Calculate the ionic strength for the following ionic compound. | | 0.04 M SnO ₂ | | | | | | |