CONCEPT: STRONG BASE-STRONG ACID TITRATIONS

Whenever we had a STRONG ACID or STRONG BASE we never use an _____ CHART.

Now, whenever you titrate two **STRONG** species you can use an _____ CHART with the units in moles.

The following can be used as the roadmap for determining the pH for a Strong Acid-Strong Base Titration.

Calculate the equivalence volume, V_e, in order to determine the volume of titrant required to reach the equivalence point.

☐ The titration of 150.0 mL of 0.100 M NaOH with 0.050 M HNO3

Before any Strong Acid is added

Before any of the strong acid titrant is added we only have a strong base initially.

 \Box The titration of 150.0 mL of 0.100 M NaOH with 0.00 mL of 0.050 M HNO₃

$$0.100 \text{ M NaOH} \rightarrow \text{Na}^{+}(\text{aq}) + \text{OH}^{-}(\text{aq})$$

$$0.100 \text{ M} \qquad 0.100 \text{ M}$$

$$pOH = -\log[OH^{-}] = -\log[0.100] = 1.0 \therefore pH = 14 - 1 = 13$$

Before Equivalence Point

Once our acid and base begin to mix we use an ICF Chart to determine the pH.

 $\ \square$ The titration of 150.0 mL of 0.100 M NaOH with 120.00 mL of 0.050 M HNO $_3$

Before the Equivalence Point

• Strong Base will be present at the end.

$$[SB] = \frac{\text{moles left}}{\text{Total Liters}}$$
 :: $pOH = -\log[SB]$

CONCEPT: STRONG BASE-STRONG ACID TITRATIONS

At Equivalence Point

At the equivalence point of a strong base–strong acid titration the solution is _____ and pH = ____.

 \Box The titration of 150.0 mL of 0.100 M NaOH with 300.00 mL of 0.050 M HNO₃

	NaOH +	HNO ₃ — Strong Acid	→ NaNO ₃	+ H ₂ O
Initial	0.015 moles	0.015 moles	0.000 moles	
Change				
Final				

At the Equivalence Point

• Conjugate Base will be present at the end.

After Equivalence Point

After the equivalence point of a strong base–strong acid titration we will have excess strong acid remaining.

 $\hfill\Box$ The titration of 150.0 mL of 0.100 M NaOH with 310.00 mL of 0.050 M HNO $_3$

	NaOH + Strong Base	HNO ₃ —— Strong Acid	→ NaNO ₃ -	+ H ₂ O
Initial	0.015 moles	0.0155 moles	0.000 moles	$ \setminus $
Change				
Final				$ \ / \ \ $

After the Equivalence Point

• Strong Acid will be present at the end.

$$[SA] = \frac{\text{moles left}}{\text{Total Liters}}$$
 :: $pH = -\log[SA]$

CONCEPT: STRONG BASE-STRONG ACID TITRATIONS CALCULATIONS
EXAMPLE: Calculate the pH of the solution resulting from the titration of 150.0 mL of 0.20 M NaOH with 80.0 mL of 0.15 M HBr.
PRACTICE: Calculate the pH of the calution reculting from the titration of 100.0 mL of 0.30 M LiH with 150.0 mL of 0.40 M
PRACTICE: Calculate the pH of the solution resulting from the titration of 100.0 mL of 0.30 M LiH with 150.0 mL of 0.40 M HI.

CONCEPT: STRONG ACID-STRONG BASE TITRATIONS

The following can be used as the roadmap for determining the pH for a Strong Base-Strong Acid Titration.

Calculate the equivalence volume, V_e, in order to determine the volume of titrant required to reach the equivalence point.

☐ The titration of 120.0 mL of 0.250 M HCl with 0.200 M KOH

Before any Strong Base is added

Before any of the strong base titrant is added we only have a strong acid initially.

☐ The titration of 120.0 mL of 0.250 M HCl with 0.00 mL of 0.200 M KOH

$$0.250 \text{ M HCl} \rightarrow \text{H}^+(\text{aq}) + \text{Cl}^-(\text{aq})$$
 $pH = -\log[H^+] = -\log[0.250] = 0.602$

Before Equivalence Point

Once our acid and base begin to mix we use an ICF Chart to determine the pH.

☐ The titration of 120.0 mL of 0.250 M HCl with 100.00 mL of 0.200 M KOH

$$K^+$$
 OH^- + HCl \longrightarrow KCl + H_2O

Before the Equivalence Point

• Strong Acid will be present at the end.

$$[SA] = \frac{\text{moles left}}{\text{Total Liters}} \quad \therefore \quad pH = -\log[SA]$$

CONCEPT: STRONG ACID-STRONG BASE TITRATIONS

At Equivalence Point

At the equivalence point of a strong base–strong acid titration the solution is _____ and pH = ____.

☐ The titration of 120.0 mL of 0.250 M HCl with 150.00 mL of 0.200 M KOH.

At the Equivalence Point

• Conjugate Base will be present at the end.

After Equivalence Point

After the equivalence point of a strong base-strong acid titration we will have excess strong base remaining.

 $\ \square$ The titration of 120.0 mL of 0.250 M HCl with 180.00 mL of 0.200 M KOH.

After the Equivalence Point

• Strong Base will be present at the end.

$$[SB] = \frac{\text{moles left}}{\text{Total Liters}} \quad \therefore \text{ pOH} = -\log[SB]$$

PRACTICE: STRONG ACID-STRONG BASE TITRATIONS CALCULATIONS 1
EXAMPLE 1: Calculate the pH of the solution resulting from the titration of 50.0 mL of 0.10 M HI with 20.0 mL of 0.30 M NaOH.
EXAMPLE 2: Calculate the pH of the solution resulting from the titration of 90.0 mL of 0.40 M HClO3 with 50.0 mL of 0.50 M KOH.