CONCEPT: EDTA In its fully protonated form EDTA exists as a hexaprotic acid: _____ $$\begin{array}{c} :O: \\ :O: \\ :O: \\ :O: \\ :O: \\ :O: \\ \\$$ In order to form metal-complexes these acidic hydrogens must first be lost. EDTA can exist in up to 7 different forms depending on the pH of the solution. $$H_{6}Y^{2+} \xrightarrow{-H^{+}} H_{5}Y^{+} \xrightarrow{-H^{+}} H_{4}Y \xrightarrow{-H^{+}} H_{3}Y^{-} \xrightarrow{-H^{+}} H_{2}Y^{2-} \xrightarrow{-H^{+}} HY^{3-} \xrightarrow{-H^{+}} Y^{4-}$$ To calculate the fraction of EDTA in its basic form we can utilize the following equation: $$\alpha_{Y^{4-}} = \frac{[Y^{4-}]}{[EDTA]} = \frac{[Y^{4-}]}{[H_6Y^{2+}] + [H_5Y^+] + [H_4Y] + [H_3Y^-] + [H_2Y^{2-}] + [HY^{3-}] + [HY^{4-}]}$$ $$\alpha_{Y^{+-}} = \frac{K_{a1}K_{a2}K_{a3}K_{a4}K_{a5}K_{a6}}{[H^{+}]^{6} + [H^{+}]^{5}K_{a1} + [H^{+}]^{4}K_{a1}K_{a2} + [H^{+}]^{3}K_{a1}K_{a2}K_{a3} + [H^{+}]^{2}K_{a1}K_{a2}K_{a3}K_{a4} + [H^{+}]K_{a1}K_{a2}K_{a3}K_{a4}K_{a5} + K_{a1}K_{a2}K_{a3}K_{a4}K_{a5} K_{a2}K_{a3}K_{a4}K_{a5} K_{a3}K_{a4}K_{a5} K_{a3}K_{a5}K_{a5} K_{a3}$$ ## **PRACTICE:** EDTA CALCULATIONS 1 **EXAMPLE 1:** The formal concentration of EDTA is 1.50 mM. What is the concentration of the Y^{4} – form at a pH of 5.0? | pН | $\alpha_{\mathrm{Y}^{4-}}$ | |-------------------|----------------------------| | 0 | 1.3×10^{-23} | | 1 | 1.4×10^{-18} | | 2 | 2.6×10^{-14} | | 3 | 2.1×10^{-11} | | 4 | 3.0×10^{-9} | | 5 | 2.9×10^{-7} | | 6 | 1.8×10^{-5} | | 7 | 3.8×10^{-4} | | 8 | 4.2×10^{-3} | | 9 | 0.041 | | 10 | 0.30 | | 11 | 0.81 | | 12 | 0.98 | | 13 | 1.00 | | 14 | 1.00 | | * 25 °C and μ = 0 | 0.10 M | **EXAMPLE 2:** Determine the $\alpha_{Y^{4-}}$ for EDTA when the pH = 8.50. ## **PRACTICE:** Determine the pH where $\,^{\,\Omega}_{Y^{4-}}$ equals 0.20. ## **CONCEPT: EDTA COMPLEXES** The _____ represents the equilibrium constant for the reaction between a ligand and a metal. $$M^{n+} + Y^{4-} \longrightarrow MY^{n-4}$$ $K_f = \frac{[MY^{n-4}]}{[M^{n+}][Y^{4-}]}$ The formation constants for metal-EDTA complexes are given below: | lon | logK _f | lon | logK _f | lon | logK _f | |---|---|--|---|--|---| | Li ⁺ Na ⁺ K ⁺ Be ²⁺ Mg ²⁺ Ca ²⁺ Sr ²⁺ Ba ²⁺ Ra ²⁺ Sc ³⁺ Y ³⁺ La ³⁺ V ²⁺ Cr ²⁺ Mn ²⁺ Fe ²⁺ | 2.95
1.86
0.8
9.7
8.79
10.65
8.72
7.88
7.4
23.1 ^a
18.08
15.36
12.7 ^a
13.6 ^a
13.89
14.30 | V ³⁺ Cr ³⁺ Mn ³⁺ Fe ³⁺ Co ³⁺ Zr ⁴⁺ Hf ⁴⁺ VO ²⁺ VO ₂ ⁺ Ag ⁺ Tl ⁺ Pd ²⁺ Zn ²⁺ Cd ²⁺ Hg ²⁺ Sn ²⁺ | 25.9 ^a 23.4 ^a 25.2 25.1 41.4 29.3 29.5 18.7 15.5 7.20 6.41 25.6 ^a 16.5 16.5 21.5 18.3 ^b | Tl ³⁺ Bi ³⁺ Ce ³⁺ Pr ³⁺ Nd ³⁺ Pm ³⁺ Sm ³⁺ Eu ³⁺ Gd ³⁺ Tb ³⁺ Dy ³⁺ Ho ³⁺ Er ³⁺ Tm ³⁺ Yb ³⁺ | 35.3
27.8 ^a
15.93
16.30
16.51
16.9
17.06
17.25
17.35
17.87
18.30
18.56
18.89
19.32
19.49 | | Co ²⁺
Ni ²⁺
Cu ²⁺
Ti ³⁺ | 16.45
18.4
18.78
21.3 | Pb ²⁺
Al ³⁺
Ga ³⁺
In ³⁺ | 18.0
16.4
21.7
24.9 | Lu ³⁺
Th ⁴⁺
U ⁴⁺ | 19.74
23.2
25.7 | a: 20 °C and μ = 0.1 M b: 20 °C and μ = 1.0 M Only a portion of EDTA exists in its basic form and the lower the pH the more the other forms predominate. $$[Y^{4-}] = \alpha_{Y^{4-}}[EDTA]$$ Under a fixed pH, $\alpha_{Y^{4-}}$ becomes a constant and can be used in determining the conditional formation constant because it represents the formation of MY^{n-4} at any pH value. $$M^{n+} + EDTA \longrightarrow MY^{n-4}$$ $K_f = \frac{[MY^{n-4}]}{[M^{n+}][EDTA]}$ **EXAMPLE:** Find $[Ba^{2+}]$ in 0.10 M BaY^{2-} at pH = 10.00. | PRACTICE: EDTA COMPLEXES CALCULATIONS 1 | |---| | EXAMPLE 1: Determine the conditional formation constant for Co(EDTA) ⁻ at pH = 8.00. | | | | | | | | | | | | EXAMPLE 2: Find the concentration of free Sn^{2+} in 0.20 M K ₂ [$Sn(EDTA)$] at pH = 9.00. | | EXAMPLE 2: Find the concentration of free Sn^{2+} in 0.20 M K ₂ [$Sn(EDTA)$] at pH = 9.00. | | EXAMPLE 2: Find the concentration of free Sn ²⁺ in 0.20 M K ₂ [Sn(EDTA)] at pH = 9.00. | | EXAMPLE 2: Find the concentration of free Sn ²⁺ in 0.20 M K ₂ [Sn(EDTA)] at pH = 9.00. | | EXAMPLE 2: Find the concentration of free Sn ²⁺ in 0.20 M K ₂ [Sn(EDTA)] at pH = 9.00. | **PRACTICE:** Find the concentration of free Na⁺ in 0.15 M Li₃[Na(EDTA)] at pH = 10.00.