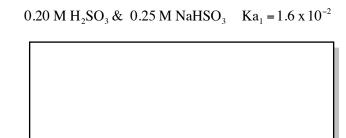

## **CONCEPT: MONOPROTIC & DIPROTIC BUFFERS**

A diprotic buffer can be approached in a way similar to monoprotic buffers. The key difference is that a diprotic acid has 2 pKa values.


## For Monoprotic Buffers



## **For Diprotic Buffers**

$$pH = pKa_1 + log\left(\frac{HA^-}{H_2A}\right)$$

$$pH = pKa_2 + log\left(\frac{A^{2-}}{HA^{-}}\right)$$



30.0 mL of 0.10 M  $Na_2SO_3$   $Ka_2 = 6.4 \times 10^{-8}$ 20.0 mL of 0.20 M  $NaHSO_3$ 

| PRACTICE: MONOPROTIC & DIPROTIC BUFFERS CALCULATIONS 1                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>EXAMPLE 1:</b> What is the pH of a solution consisting of 2.5 M potassium dihydrogen phosphite (KH <sub>2</sub> PO <sub>3</sub> ) and 2.75 M phosphorus acid (H <sub>3</sub> PO <sub>3</sub> )? $K_{a1} = 3.0 \times 10^{-2}$ and $K_{a2} = 1.66 \times 10^{-7}$ . |
|                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                       |
| <b>EXAMPLE 2:</b> Sulfurous acid, $H_2SO_3$ , is a major component in the creation of commercial fertilizers. What is the buffer component concentration ratio of a buffer that has a pH of 1.15? $K_{a1} = 1.39 \times 10^{-2}$ and $K_{a2} = 6.73 \times 10^{-8}$ . |
|                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                       |
| <b>PRACTICE:</b> Calculate the pH of a solution made by mixing 8.627 g of sodium butanoate in enough 0.452 M butanoic acid,                                                                                                                                           |

 $HC_4H_7O_2$ , to make 250.0 mL of solution.  $K_a$  = 1.5 x 10<sup>-5</sup>.