CONCEPT: pH AND pOH OF COMPOUNDS

To deal with incredibly small concentration values of [H⁺] and [OH⁻] we can use the pH scale.

Under normal conditions, the pH scale operates within the range of ______ to _____.

By taking the – log of [H⁺] and [OH⁻] we can find pH and pOH.

$$pH = -\log[H^+]$$

$$pOH = -\log[OH^{-}] p = -\log$$

$$p = -\log$$

By recognizing the relationship between [H⁺] and [OH⁻] with pH and pOH we can create new formula relationships.

In general as the pH value increases there is a ____ [H⁺] & ____ [OH⁻].

- A species with a pH equal to 7 is classified as ______ : [H⁺] ____ 1.0 x 10⁻⁷ M ____ [OH⁻].
- A species with a pH greater than 7 is classified as ______ : [H⁺] ____ 1.0 x 10⁻⁷ M ____ [OH⁻].
- A species with a pH less than 7 is classified ______ : [H⁺] ____ 1.0 x 10⁻⁷ M ____ [OH⁻].

By using – log with the equilibrium expression for water a relationship between pH and pOH can be created.

$$pH + pOH = 14$$

EXAMPLE: What is the hydroxide ion and hydronium ion concentration of a solution with a pH equal to 5.88?

PRACTICE: pH AND pOH OF COMPOUNDS

EXAMPLE 1: Of the following options, a solution with which pH would have the greatest concentration of hydronium ions?

- a) 4
- b) 8
- c) 11
- d) 13

EXAMPLE 2: What mass of HBr should a student mix into 250.00 mL of water to make a solution with a pH = 3.850?

- a) 0.00286 g
- b) 0.0547 g
- c) 1.41 x 10⁻⁴ g
- d) 0.0114 g
- e) 2.87g

PRACTICE: What is the hydronium ion concentration in a solution having a pOH of 3.62?

- a) 3.8×10^{-5} M
- b) 4.2×10^{-11} M
- c) 3.8×10^{-4} M
- d) 2.6×10^{-11} M
- e) 5.1×10^{-10} M