CONCEPT: pH AND pOH OF COMPOUNDS To deal with incredibly small concentration values of [H⁺] and [OH⁻] we can use the pH scale. Under normal conditions, the pH scale operates within the range of ______ to _____. By taking the – log of [H⁺] and [OH⁻] we can find pH and pOH. $$pH = -\log[H^+]$$ $$pOH = -\log[OH^{-}] p = -\log$$ $$p = -\log$$ By recognizing the relationship between [H⁺] and [OH⁻] with pH and pOH we can create new formula relationships. In general as the pH value increases there is a ____ [H⁺] & ____ [OH⁻]. - A species with a pH equal to 7 is classified as ______ : [H⁺] ____ 1.0 x 10⁻⁷ M ____ [OH⁻]. - A species with a pH greater than 7 is classified as ______ : [H⁺] ____ 1.0 x 10⁻⁷ M ____ [OH⁻]. - A species with a pH less than 7 is classified ______ : [H⁺] ____ 1.0 x 10⁻⁷ M ____ [OH⁻]. By using – log with the equilibrium expression for water a relationship between pH and pOH can be created. $$pH + pOH = 14$$ **EXAMPLE:** What is the hydroxide ion and hydronium ion concentration of a solution with a pH equal to 5.88? ## PRACTICE: pH AND pOH OF COMPOUNDS **EXAMPLE 1:** Of the following options, a solution with which pH would have the greatest concentration of hydronium ions? - a) 4 - b) 8 - c) 11 - d) 13 **EXAMPLE 2:** What mass of HBr should a student mix into 250.00 mL of water to make a solution with a pH = 3.850? - a) 0.00286 g - b) 0.0547 g - c) 1.41 x 10⁻⁴ g - d) 0.0114 g - e) 2.87g **PRACTICE:** What is the hydronium ion concentration in a solution having a pOH of 3.62? - a) 3.8×10^{-5} M - b) 4.2×10^{-11} M - c) 3.8×10^{-4} M - d) 2.6×10^{-11} M - e) 5.1×10^{-10} M