CONCEPT: GRAVIMETRIC ANALYSIS In *gravimetric analysis* the mass of a product in a chemical reaction is used to calculate the amount of the original analyte. **EXAMPLE:** A 25.00 mL solution containing Br - was treated with excess PbSO₄ to precipitate 0.7550 g of PbBr₂. What was the molarity of the Br - in the unknown? PbSO₄ (s) + 2 Br $$^-$$ (aq) \longrightarrow PbBr₂ (s) + SO₄²⁻ (aq) **PRACTICE:** The Fe in a 1.1530 g sample of iron ore is precipitated as $Fe_2O_3 \cdot x H_2O$ by the addition of NH₃. The residue is ignited at high temperatures to give 0.6310 g of pure Fe_2O_3 . Calculate the weight percent of Fe in the ore. $$2 \text{ Fe}^{3+} (aq) + 6 \text{ OH}^- (aq) \longrightarrow \text{Fe}_2\text{O}_3 \bullet x \text{ H}_2\text{O}$$ $$Fe_2O_3 \cdot x H_2O + heat \longrightarrow Fe_2O_3 + 6 x H_2O$$ ## **CONCEPT: TITRATION CALCULATIONS 1** **EXAMPLE 1:** The reaction between piperazine and acetic acid creates an adduct product known as piperazine diacetate. HN NH + 2 CH₃CO₂H $$\longrightarrow$$ H₂ $\mathring{\text{N}}$ $\mathring{\text{N}}$ H₂(CH₃CO₂ $^-$)₂ A 7.50 g sample of impure piperazine contained 83.01% piperazine. How many grams of piperazine diacetate would be formed in the process? **EXAMPLE 2**: The amount of iron within an ore sample was determined by an oxidation-reduction titration using potassium permanganate, $KMnO_4$, as the titrant. A 0.5600 g sample of the ore was placed into acid and the newly freed Fe^{3+} was then reduced to Fe^{2+} . The titration of this solution required 39.82 mL of 0.0315 M $KMnO_4$ to reach the end-point. Determine the mass percent of Fe_2O_3 in the sample. $$MnO_4^- + 5 Fe^{2+} + 8 H^+ \longrightarrow Mn^{2+} + 5 Fe^{3+} + 4 H_2O$$