CONCEPT: SOLUBILITY PRODUCT CONSTANT

_____ represents the maximum amount of solute that could successfully dissolved in a solvent.

- Associated with any solid is a *Ksp* value, which stands for the solubility product constant.
- The larger the solubility product constant then the _____ soluble an ionic solid is in a solvent.
- The smaller the solubility product constant then the _____ soluble an ionic solid is in a solvent.

EXAMPLE 1: A hypothetical compound MX_3 has a molar solubility of 0.00562 M. What is the value of K_{sp} for MX_3 ?

- a) 3.16 x 10⁻⁵
- b) 2.99 x 10⁻⁹
- c) 9.48 x 10⁻⁵
- d) 2.69 x 10⁻⁸

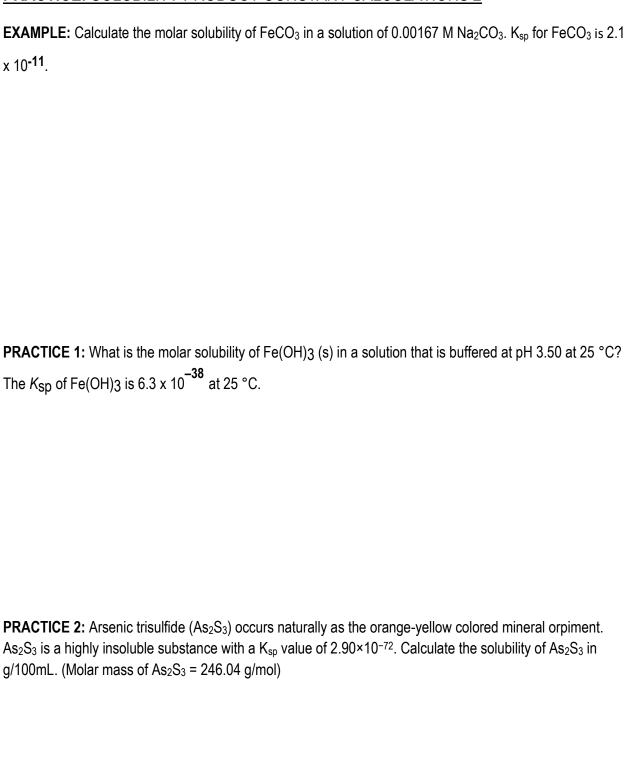
EXAMPLE 2: Which of the following compounds will have the highest molar solubility in pure water?

a)
$$Co(OH)_2$$
 $K_{sp} = 1.3 \times 10^{-15}$

b)
$$Sr_3(PO_4)_2$$
 $K_{sp} = 4.0 \times 10^{-28}$

c) PbCl₂
$$K_{sp} = 1.60 \times 10^{-5}$$

d) AgCN
$$K_{sp} = 5.97 \times 10^{-17}$$

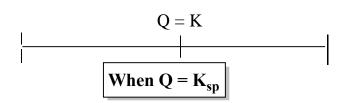

e) PbSO₄
$$K_{sp} = 1.82 \times 10^{-8}$$

PRACTICE: SOLUBILITY PRODUCT CONSTANT CALCULATIONS 1

EXAMPLE 1: La(OH)₃ has a K_{sp} of 2.0 x 10⁻²¹. How many grams of La(OH)₃ (MW: 189.93 g/mol) are dissolved as hydroxide ions in 2.5 liter of a saturated solution of La(OH)₃?

EXAMPLE 2: Find the pH of a saturated solution of Aluminum hydroxide, Al(OH)₃. The K_{sp} of Al(OH)₃ is 1.9 x 10⁻¹⁰.

PRACTICE: SOLUBILITY PRODUCT CONSTANT CALCULATIONS 2


CONCEPT: THE REACTION QUOTIENT, Q

The reaction quotient, Q, is used to determine if our chemical reaction is at equilibrium and if a precipitate will form.

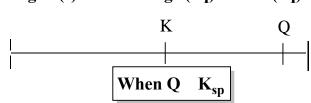
• If the reaction quotient Q is _____ the equilibrium constant K then our reaction is at equilibrium.

AgCl (s)
$$\longrightarrow$$
 Ag⁺ (aq) + Cl⁻ (aq)
1.3 x 10⁻⁵ M 1.3 x 10⁻⁵ M

$$K_{sp} = 1.77 \cdot 10^{-10}$$

$$Q = \frac{products}{reac \ tan \ ts} = [Ag^+][Cl^-] = [1.3 \ ^10^{-5}][1.3 \ ^10^{-5}] = 1.77 \ ^10^{-10}$$

Comparing the reaction quotient Q to the equilibrium constant K will determine the direction the reaction will shift.

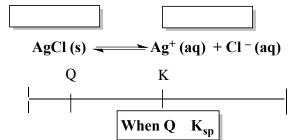

• If Q is _____ than K then our reaction will shift to the _____ .

AgCl (s)
$$\longrightarrow$$
 Ag⁺ (aq) + Cl⁻ (aq)
0.250 M 0.250 M

$$K_{sp} = 1.77 \cdot 10^{-10}$$

$$Q = \frac{products}{reac tan ts} = [Ag^{+}][Cl^{-}] = [0.250][0.250] = 6.25 \cdot 10^{-2}$$

 $AgCl(s) \longrightarrow Ag^{+}(aq) + Cl^{-}(aq)$



If Q is _____ than K then our reaction will shift to the _____ .

AgCl (s)
$$\longrightarrow$$
 Ag⁺ (aq) + Cl⁻ (aq)
4.6 x 10⁻⁹ M 1.1 x 10⁻¹⁵ M

$$K_{sp} = 1.77 \cdot 10^{-10}$$

$$Q = \frac{products}{reac \, tan \, ts} = [Ag^+][Cl^-] = [4.6 \, ^{\prime} \, 10^{-9}][1.1 \, ^{\prime} \, 10^{-15}] = 5.06 \, ^{\prime} \, 10^{-24}$$

PRACTICE: THE REACTION QUOTIENT CALCULATIONS 1
EXAMPLE 1: Will a precipitate form when 0.150 L of 0.100 M Pb($C_2H_3O_2$) ₂ and 0.100 L of 0.20 M NaCl are mixed? The K_{sp} value of PbCl ₂ is 1.2×10^{-5} .

EXAMPLE 2: What is the minimum pH at which $Fe(OH)_2$ will precipitate if the solution has $[Fe^{2+}] = 0.0583$ M? Ksp of $Fe(OH)_2$ is 4.87×10^{-17} ?