CONCEPT: SI UNITS

The International System of Units (SI) provides 9 units of measurement as the foundation from which all other SI units can be derived.

CI	Raca	T	n	itc
7	Base		I n	ITS

		SI Base Unit	
Physical Quantity	Name	Symbol	Description
Mass	kilogram	kg	Equal to the mass of a Pt-Ir alloy prototype constructed in 1885.
Length	meter	m	Distance light travels in a vacuum during 3.335×10^{-9} of a second.
Time	second	s	Related to an atomic transition of Cesium-133.
Temperature	kelvin	K	Defined as the triple point of ${\rm H_2O}$ as 273.15 K and absolute zero as 0 K.
Amount of substance	mole	mol	Number of particles equal to the number of atoms in 0.012 kg of Carbon-12 (\sim 6.022 x 10^23).
Electrical Current	ampere	A	A unit of electric current that represents the flow of one coulmob per second.
luminous intensity	candela	cd	Measurement of luminous intensity preceptible by the human eye.
Plane angle	radian	rad	A circle contains 2 π radians.
Solid angle	steradian	sr	A sphere contains 4 π steradians.

SI Derived Units							
Physical Quantity	Name	Symbol	SI Derived Units	SI Base Units			
Frequency	hertz	Hz		$\frac{1}{s}$			
Force	newton	N		$\frac{m \cdot kg}{s^2}$			
Pressure	pascal	Pa	$\frac{N}{m^2}$	$\frac{kg}{m\cdot s^2}$			
Energy, work, quantity of heat	joule	J	N·m	$\frac{m^2 \cdot kg}{s^2}$			
Power	watt	W	$\frac{J}{s}$	$\frac{m^2 \cdot kg}{s^3}$			
Electrical Charge	coulomb	С		$s\cdot A$			
Potential	volt	V	$\frac{W}{A}$	$\frac{m^2 \cdot kg}{s^3 \cdot A}$			
Resistance	ohm	Ω	$\frac{V}{A}$	$\frac{m^2 \cdot kg}{s^3 \cdot A^2}$			
Capacitance	farad	F	$\frac{C}{V}$	$\frac{s^4 \cdot A^2}{m^2 \cdot kg}$			