CONCEPT: LE CHATELIER'S PRINCIPLE

Le Chatelier's Principle states if a reaction's equilibrium is disrupted it will shift in order to re-establish equilibrium.

Reactants & Products

□ Adding Reactants or Removing Products

Reaction will shift to the ____

 \Rightarrow 3 C (g) + D (s)

□ Removing Reactants or Adding Products

Reaction will shift to the ___

 \Rightarrow 3 C (g) + D (s)

Pressure & Volume

□ Decreasing Pressure or Increasing Volume

Reaction will shift to side with _____ moles of gas.

 \Rightarrow 3 C (g) + D (s) 2 A(g) + B(s)

□ Increasing Pressure or Decreasing Volume

Reaction will shift to side with _____ moles of gas.

2 A(g) + B(s) \rightarrow 3 C (g) + D (s)

Temperature |

 $-\Delta H$ (exothermic) heat as a product

 $+\Delta H$ (endothermic) heat as a reactant

□ Increasing Temperature

Reaction will shift _

2 A(g) + B(s) + heat = \Rightarrow 3 C (g) + D (s) □ Decreasing Temperature

Reaction will shift _____ heat.

 $2 A(g) + B(s) + \frac{}{heat} = 3 C(g) + D(s)$

Inert Gas (Noble Gas)

□ Adding under constant volume

There will be ___ _____ in the equilibrium position

 \rightarrow 3 C (g) + D (s)

□ Adding under constant pressure

Reaction will shift to side with _____ moles of gas.

2 A(g) + B(s) \rightarrow 3 C (g) + D (s)

Liquids, Solids & Catalysts

□ Addition

There will be ______ in the equilibrium position

 $2 A(g) + B(s) \longrightarrow 3 C(g) + D(s)$

PRACTICE: LE CHATELIER'S PRINCIPLE

EXAMPLE 1: The following data was collected for the following reaction at equilibrium.

$$A(s) + 2 B(g) = 3 C(g) + D(g)$$

At 55°C, K is 4.7 x 10⁻⁷ and at 100°C K is 1.9 x 10⁻². Which of the following statements is true?

- a) The reaction is exothermic.
- b) The reaction is endothermic.
- c) The enthalpy change, ΔH , is equal to zero.
- d) Not enough information is given.

EXAMPLE 2: In which of these gas-phase equilibria is the yield of products increased by increasing the total pressure on the reaction mixture?

a) CO (g) +
$$H_2O(g)$$
 \longrightarrow CO₂ (g) + $H_2(g)$

c)
$$2 SO_3(g) = 2 SO_2(g) + O_2(g)$$

d)
$$PCl_5(g)$$
 \longrightarrow $PCl_3(g) + Cl_2(g)$

e)
$$2 H_2O_2(g)$$
 \longrightarrow $2 H_2O(g) + O_2(g)$

PRACTICE: The reaction 2 NaHCO₃ (s) \longrightarrow Na₂CO₃ (s) + H₂O (g) + CO₂ (g) is endothermic. What would you do in order to maximize the yield of Na₂CO₃ (s)?

- a) Lower the temperature and increase the volume of the container.
- b) Raise the temperature and add CO₂(g) and H₂O(g).
- c) Lower the temperature and decrease the volume of the container.
- d) Add CO₂(g) and H₂O(g) and increase the volume of the container.
- e) Increase the volume of the container and raise the temperature.