CONCEPT: WEAK BASE-STRONG ACID TITRATIONS

Whenever you titrate a **WEAK** Species with a **STRONG** species you use an _____ CHART.

The following can be used as the roadmap for determining the pH for a Weak Base-Strong Acid Titration.

Equivalence Volume (V_e)

Calculate the equivalence volume, V_e, in order to determine the volume of titrant required to reach the equivalence point.

□ The titration of 100.0 mL of 0.100 M NH₃ with 0.20 M HCl

Before any Strong Acid is added

Before any of the strong acid titrant is added we only have a weak base initially.

□ The titration of 100.0 mL of 0.100 M NH₃ with 0.00 mL of 0.20 M HCl

$$K_{b} = \frac{x^{2}}{\left[\begin{array}{c} \\ \\ \end{array}\right]_{0} - x} \quad \therefore \quad x = \left[OH^{-}\right] \\ \therefore \quad pOH = -\log\left[OH^{-}\right] \\ \therefore \quad pH = 14 - pOH \\ \hline \qquad \frac{\left[\begin{array}{c} \\ \\ \end{array}\right]_{0}}{K_{b}} > 500 \\ \hline \qquad 5\% \text{ Approximation Method}$$

Before Equivalence Point

Once our acid and base begin to mix we use an ICF Chart to determine the pH.

☐ The titration of 100.0 mL of 0.100 M NH₃ with 20.0 mL of 0.20 M HCl

CONCEPT: WEAK BASE-STRONG ACID TITRATIONS

At Equivalence Point

At the equivalence point of a weak base–strong acid titration the solution is _____ and pH ____ 7.

 \Box The titration of 100.0 mL of 0.100 M NH₃ with 50.0 mL of 0.200 M HCl

At the Equivalence Point

- Only Weak Acid will be present at the end.
- Use an ICE Chart to find pH.

$$[WA] = \frac{\text{moles left}}{\text{Total Liters}}$$
 \therefore $K_a = \frac{x^2}{[WA]}$

After Equivalence Point

After the equivalence point of a weak base-strong acid titration we will have excess strong acid remaining.

 \Box The titration of 100.0 mL of 0.100 M NH₃ with 60.0 mL of 0.200 M HCl

After the Equivalence Point

• Strong Acid will be present at the end.

$$[SA] = \frac{\text{moles left}}{\text{Total Liters}}$$
 :: $pH = -\log[SA]$

PRACTICE: WEAK BASE-STRONG ACID TITRATIONS CALCULATIONS EXAMPLE: Consider the titration of 50.0 mL of 0.150 M CH_3NH_2 ($K_b = 4.4.x \ 10^{-4}$) with 75.0 mL of 0.200 mL of 0.200 M
HCI. Calculate the pH.
PRACTICE: Calculate the pH of the solution resulting from the mixing of 75.0 mL of 0.100 M NaC ₂ H ₃ O ₂ and 75.0 mL of 0.150 M HC ₂ H ₃ O ₂ with 0.0040 mole of HClO ₄ . The K _a value of acetic acid is 1.8×10^{-5} .