CONCEPT: ACTIVITY COEFFICIENTS

In order to express the effect of ionic strength on the concentration of species we calculate its activity with the use of an *activity coefficient*, which is given in units of gamma.

$$A_{C} = \underline{\hspace{1cm}} \text{ of the compound}$$

$$A_{C} = [C]\gamma_{C} \qquad [C] = \underline{\hspace{1cm}} \text{ of the compound}$$

$$\gamma_{C} = \underline{\hspace{1cm}} \text{ of the compound}$$

The activity coefficient and ionic strength can be more closely and accurately related by using the extended Debye-Huckel equation:

$$\log \gamma = \frac{-0.51z^2 \sqrt{\mu}}{1 + \left(\frac{\alpha \sqrt{\mu}}{305}\right)}$$

The effect of ionic strength, ionic charge and ionic size on the activity coefficient:

- 1. As ionic strength _____, the activity coefficient will ____ and as the activity coefficient approaches _____, ionic strength approaches _____.
- 2. As the size of ionic charge _____, the more activity coefficient moves away from unity.
- 3. The smaller the ionic size _____, the greater the effects of the activity coefficient.

EXAMPLE 1: For the following compound, state the solubility product expression with its acticity coefficient.

Cu₂(PO₄)₃

EXAMPLE 2: For the following compound, state the solubility product expression with its acticity coefficient.

Mo₂S₅

CONCEPT: ACTIVITY COEFFICIENT TABLE

By calculating the ionic strength of a compound the activity coefficient can be determined by the chart given below.

Activity (Coeffici	ents					
	Ionic Size	lonic Strength (μ, M)					
lons	(α, pm)	0.001	0.005	0.01	0.05	0.1	
Charges = ±1		Activity Coefficients (γ)					
H ⁺	900	0.967	0.933	0.914	0.860	0.830	
(C ₆ H ₅) ₂ CHCO ₂ ⁻ , (C ₃ H ₇) ₄ N ⁺	800	0.966	0.931	0.912	0.850	0.820	
(O2N)3C6H2O ⁻ , (C3H7)3NH ⁺ , CH3OC6H4CO2 ⁻	700	0.965	0.930	0.909	0.845	0.810	
$eq:Li^+,ChbCO2^-,HOC6H4CO2^-,ChbCH2CO2^-,ChbC$	₂ -, 600	0.965	0.929	0.907	0.835	0.800	
Cl ₂ CHCO ₂ ⁻ , Cl ₃ CCO ₂ ⁻ , (CH ₃ CH ₂) ₃ NH ⁺ , (C ₃ H ₇)NH ₃ ⁺	500	0.964	0.928	0.904	0.830	0.790	
Na ⁺ , CdCl ⁺ , ClO ₂ ⁻ , IO ₃ ⁻ , HCO ₃ ⁻ , H ₂ PO ₄ ⁻ , HSO ₃ ⁻ , H ₂ AsC Co(NH ₃) ₄ (NO ₂) ₂ ⁺ , CH ₃ CO ₂ ⁻ , ClCH ₂ CO ₂ ⁻ , (CH ₃) ₄ N ⁺ , (CH ₃ CH ₂) ₂ NH ₂ ⁺ , H ₂ NCH ₂ CO ₂ ⁻	⁾⁴⁻ , 450	0.964	0.928	0.902	0.820	0.775	
H3NCH2CO2H, (CH3)3NH, CH3CH2NH3*	400	0.964	0.927	0.901	0.815	0.770	
OH ⁻ , F ⁻ , SCN ⁻ , OCN ⁻ , HS ⁻ , CIO ₃ ⁻ , CIO ₄ ⁻ , BrO ₃ ⁻ , IO ₄ ⁻ , MnO ₄ ⁻ , HCO ₂ ⁻ , H2citrate ⁻ , CH ₃ NH ₃ ⁺ , (CH ₃) ₂ NH ₂ ⁺	350	0.964	0.926	0.900	0.810	0.760	
K ⁺ , Cl ⁻ , Br ⁻ , l ⁻ , CN ⁻ , NO ₂ ⁻ , NO ₃ ⁻	300	0.964	0.925	0.899	0.805	0.755	
Rb ⁺ , Cs ⁺ , NH ₄ ⁺ , Tl ⁺ , Ag ⁺	250	0.964	0.924	0.898	0.800	0.750	
Charges = ±2		Activity Coefficients (γ)					
Mg ²⁺ , Be ²⁺	800	0.872	0.755	0.690	0.520	0.450	
CH2(CH2CH2CO2 ⁻)2, (CH2CH2CH2CO2 ⁻)2	700	0.872	0.755	0.685	0.500	0.425	
$\begin{array}{l} Ca^{2+},Cu^{2+},Zn^{2+},Sn^{2+},Mn^{2+},Fe^{2+},Ni^{2+},Co^{2+},C6H_4(CO_2)\\ H_2C(CH_2CO_2^-)_2,(CH_2CH_2CO_2^-)_2 \end{array}$	-) _{2,} 600	0.870	0.749	0.675	0.485	0.405	
$Sr^{2+}, Ba^{2+}, Cd^{2+}, Hg^{2+}, S^{2-}, S_2O4^{2-}, WO4^{2-}, H_2C(CO2^-)_2, \\ (CH_2CO2^-)_2, (CHOHCO2^-)_2$	500	0.868	0.744	0.670	0.465	0.380	
$\label{eq:pb2+} Pb^{2+},CO_3{}^{2-},SO_3{}^{2-},MoO_4{}^{2-},Co(NH_3)_5Cl^{2+},Fe(CN)_5NO^{2-}\\ C_2O_4{}^{2-},Hcitrate^{2-}$	450	0.867	0.742	0.665	0.455	0.370	
${\rm Hg^{2+}},{\rm SO4^{2-}},{\rm S2O3^{2-}},{\rm S2O6^{2-}},{\rm S2O8^{2-}},{\rm SeO_4^{2-}},{\rm CrO4^{2-}},{\rm HPO4^{2-}}$	400	0.867	0.740	0.660	0.445	0.355	
Charges = ±3		Activity Coefficients (γ)					
Al ³⁺ , Fe ³⁺ , Cr ³⁺ , Sc ³⁺ , Y ³⁺ , In ³⁺ , lanthanides ^a	900	0.738	0.540	0.445	0.245	0.180	
citrate ³ -	500	0.728	0.510	0.405	0.180	0.115	
$PO4^{3-}$, $Fe(CN)6^{3-}$, $Cr(NH_3)6^{3+}$, $Co(NH_3)3^{3+}$, $Co(NH_3)5H_2O^{3-}$	3+ 400	0.725	0.505	0.395	0.160	0.095	
Charges = ±4		Activity Coefficients (γ)					
Th ⁴⁺ , Zr ⁴⁺ , Ce ⁴⁺ , Sn ⁴⁺	1100	0.588	0.350	0.255	0.100	0.065	
Fe(CN)6 ⁴⁻	500	0.570	0.310	0.200	0.048	0.021	

EXAMPLE: Find the activity coefficient for the ion specified in the following compound:

a) Na⁺ in 0.005 M NaCl

CONCEPT: ACTIVITY COEFFICIENT TABLE CALCULATIONS 1

EXAMPLE 1: Find the activity coefficient for the ion specified in the following compound:

CN - in 1.0 mM RbCN

EXAMPLE 2: Find the activity coefficient for the ion specified in the following compound:

Zr4+ in 5.0 mM Zr(NO₃)₄

PRACTICE: Calculate the activity coefficient of H⁺ using the extended Debye-Huckel equation for a solution comprised of H⁺ and I ⁻. Given that H⁺ has a size of 9.00 x 10⁻¹⁰ m and the molar concentration of the solution is 0.075.

$$\log \gamma = \frac{-0.51z^2 \sqrt{\mu}}{1 + \left(\frac{\alpha \sqrt{\mu}}{305}\right)}$$

CONCEPT: NON-IDEAL IONIC STRENGTH

Sometimes the ionic strength of a dissolvable compound you calculate may not be found on your chart.

In a case like this you can just use ______ to find the best answer for our activity coefficient.

$$\frac{Unknown \ \gamma \ interval}{\Delta \gamma} = \frac{known \ \mu \ interval}{\Delta \mu}$$

EXAMPLE: Find the activity coefficient from the given ionic strength, μ , for the following ion.

Ba²⁺ when
$$\mu = 0.075$$

	lonic Size	lonic Strength (μ, M)					
lons	(α , pm)	0.001	0.005	0.01	0.05	0.1	
Sr ²⁺ , Ba ²⁺ , Cd ²⁺ , Hg ²⁺ , S ²⁻ , S ₂ O ₄ ²⁻ , WO ₄ ²⁻ , H ₂ C(CO ₂ -) ₂ , (CH ₂ CO ₂ -) ₂ , (CHOHCO ₂ -) ₂	500	0.868	0.744	0.670	0.465	0.380	

PRACTICE: Find the activity coefficient from the given ionic strength, μ , for the following ion.

 $F - when \mu = 0.0080$

	lonic Size	lonic Strength (μ, M)					
lons	(a , pm)	0.001	0.005	0.01	0.05	0.1	
OH ⁻ , F ⁻ , SCN ⁻ , OCN ⁻ , HS ⁻ , ClO ₃ ⁻ , ClO ₄ ⁻ , BrO ₃ ⁻ , IO ₄ ⁻ , MnO ₄ ⁻ , HCO ₂ ⁻ , H2citrate ⁻ , CH ₃ NH ₃ ⁺ , (CH ₃) ₂ NH ₂ ⁺	350	0.964	0.926	0.900	0.810	0.760	