CONCEPT: GIBBS FREE ENERGY

Spontaneous reactions can occur without any outside energy being invested, while nonspontaneous reactions cannot.

Gibbs Free Energy can also be calculated through the use of various equations:

$$\Delta G = \Delta H - T\Delta S$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

$$\Delta G^{\circ} = -RT \ln K$$

$$R = constant = 8.314 \frac{J}{mol \cdot K}$$

EXAMPLE: Which of the following is an example of a nonspontaneous process?

- a) Ice melting at room temperature
- b) Sodium metal reacting violently with water
- c) Rusting of iron at room temperature
- d) A ball rolling downhill
- e) Water freezing at room temperature

PRACTICE: GIBBS FREE ENERGY CALCULATIONS 1

EXAMPLE 1: Consider the decomposition of a metal oxide to its elements, where M represents a generic metal.

$$M_3O_4(s)$$
 \longrightarrow 3 M (s) + 2 $O_2(g)$

Compound	M_3O_4	M	O ₂
$\Delta G_{\rm f}^{\rm o}\left(\frac{kJ}{mol}\right)$	-9.50	0	0

- i) What is the standard change in Gibbs energy for the reaction, as written, in the forward direction?
- ii) What is the equilibrium constant of this reaction, as written, in the forward direction at 298 K?
- iii) What is the equilibrium pressure of 0_2 (g) over M (s) at 298 K?

EXAMPLE 2: For the reaction:

2 C (graphite) +
$$H_2(g)$$
 \longrightarrow $C_2H_2(g)$

 ΔG° = + 209.2 kJ at 25°C. If P_{H2} = 100 atm, and P_{C2H2} = 0.10 atm, calculate ΔG for reaction.

- a) +192.1 kJ
- b) +266.3 kJ
- c) -16.9 kJ
- d) +207.8 kJ
- e) +17.3 kJ

PRACTICE: GIBBS FREE ENERGY CALCULATIONS 2

EXAMPLE: Sodium carbonate can be made by heating sodium bicarbonate:

2 NaHCO₃ (s)
$$\longrightarrow$$
 Na₂CO₃ (s) + CO₂ (g) + H₂O (g)

Given that ΔH° = 128.9 kJ/mol and ΔG° = 33.1 kJ/mol at 25°C, above what minimum temperature will the reaction become spontaneous under standard-state conditions?

- a) 0.4 K
- B) 3.9 K
- C) 321 K
- D) 401 K
- E) 525 K

PRACTICE: The signs of ΔH , ΔS , and ΔG at 25°C are shown below for three chemical reactions.

 ΔH ΔS ΔG

a) – +

b) + + +

c) **-** + +

Which reaction would go in the reverse direction at high temperatures?