CONCEPT: BUFFERS

A buffer is a solution composed of a weak acid with its conjugate base.

A buffer works to keep both _____ and ____ constant.

If a **strong base** then the buffer resists a pH change by having the **weak acid** neutralize it.

$$HCIO$$
 (aq) + $NaOH$ (aq) \longrightarrow $NaCIO$ (aq) + H_2O (l) Weak oxyacid Strong Base

If a **strong acid** then the buffer resists a pH change by having the **conjugate base** neutralize it.

The weak acid and conjugate base can be different from one another by up to a magnitude of 10.

• This is called the ______. If they are different by more than 10 then it will not be a buffer.

The more concentrated the weak acid and conjugate base then the better the buffer can counteract strong acid or strong base added.

CONCEPT: BUFFER SYNTHESIS

To calculate the pH of a buffer then we use the Henderson Hasselbalch Equation:

$$pH = pKa + log \frac{conjugate base}{weak acid}$$

There are 3 ways to form a buffer:

- 1) Mixing a _____ acid and a ____ base.
- In this case, a buffer is most ideal when both components are highly concentrated and equal to one another.

- 2) Mixing a _____ acid and a _____ base.
 - In this case since we have a strong species mixing with a weak species then we must make sure the weak species is higher in amount.

- 3) Mixing a _____ acid and a _____ base.
 - In this case since we have a strong species mixing with a weak species then we must make sure the weak species is higher in amount.

PRACTICE: BUFFER SYNTHESIS CALCULATIONS 1
EXAMPLE 1: Which of the following combinations can result in the formation of a buffer?
a) 75 mL of 0.10 M HCIO $_3$ with 50 mL of 0.10 M CH $_3$ NH $_2$.
b) 25 mL of 0.10 M H_2SO_3 with 40.0 mL of 0.10 M NaOH.
c) 50 mL of 0.10 M NH ₄ Cl with 50 mL of 0.05 M Sr(OH) ₂ .
d) 50 mL of 0.20 M HF with 40 mL of 0.20 M NaOH.
EXAMPLE 2: Calculate the pH of a solution formed by mixing 130.0 mL of a 0.300 M C ₂ H ₅ NH ₂ solution with 70.0 mL of a
$0.500 \text{ M C}_2\text{H}_5\text{NH}_3^+$ solution. (K _b of C ₂ H ₅ NH ₂ is $5.0 \times 10^{\textbf{-4}}$).
PRACTICE: Which of the following molar ratios is the correct equilibrium ratio of BASE: ACID for a solution made of aniline (Kb = 3.8×10^{-10}) and anilinium nitrate where the pH is 4.80 ?
a) 1:2
b) 3:5
c) 7:2
d) 2:1

e) 5:3

PRACTICE: BUFFER SYNTHESIS CALCULATIONS 2

EXAMPLE 1: You are asked to go into the lab and prepare a buffer solution with a pH of 6.40 ± 0.2 . Which weak acid would be the best choice?

- a) carbonic acid $K_a = 4.2 \times 10^{-7}$
- b) phenol $K_a = 1.3 \times 10^{-10}$
- c) ascorbic acid $K_a = 8.0 \times 10^{-5}$
- d) hydrosulfuric acid $K_a = 9.5 \times 10^{-8}$
- e) potassium hydrogen phthalate $K_a = 3.1 \times 10^{-6}$

EXAMPLE 2: Calculate the pH of a solution made by mixing 8.627 g of sodium butanoate in enough 0.452 M butanoic acid, $HC_4H_7O_2$, to make 250.0 mL of solution. The K_a of butanoic acid is 1.5 x 10^{-5} .

- a) 4.75
- b) 4.82
- c) 5.00
- d) 2.58
- e) 4.65