CONCEPT: BUFFERS A buffer is a solution composed of a weak acid with its conjugate base. A buffer works to keep both _____ and ____ constant. If a **strong base** then the buffer resists a pH change by having the **weak acid** neutralize it. $$HCIO$$ (aq) + $NaOH$ (aq) \longrightarrow $NaCIO$ (aq) + H_2O (l) Weak oxyacid Strong Base If a **strong acid** then the buffer resists a pH change by having the **conjugate base** neutralize it. The weak acid and conjugate base can be different from one another by up to a magnitude of 10. • This is called the ______. If they are different by more than 10 then it will not be a buffer. The more concentrated the weak acid and conjugate base then the better the buffer can counteract strong acid or strong base added. ## **CONCEPT:** BUFFER SYNTHESIS To calculate the pH of a buffer then we use the Henderson Hasselbalch Equation: $$pH = pKa + log \frac{conjugate base}{weak acid}$$ There are 3 ways to form a buffer: - 1) Mixing a _____ acid and a ____ base. - In this case, a buffer is most ideal when both components are highly concentrated and equal to one another. - 2) Mixing a _____ acid and a _____ base. - In this case since we have a strong species mixing with a weak species then we must make sure the weak species is higher in amount. - 3) Mixing a _____ acid and a _____ base. - In this case since we have a strong species mixing with a weak species then we must make sure the weak species is higher in amount. | PRACTICE: BUFFER SYNTHESIS CALCULATIONS 1 | |---| | EXAMPLE 1: Which of the following combinations can result in the formation of a buffer? | | a) 75 mL of 0.10 M HCIO $_3$ with 50 mL of 0.10 M CH $_3$ NH $_2$. | | b) 25 mL of 0.10 M H_2SO_3 with 40.0 mL of 0.10 M NaOH. | | c) 50 mL of 0.10 M NH ₄ Cl with 50 mL of 0.05 M Sr(OH) ₂ . | | d) 50 mL of 0.20 M HF with 40 mL of 0.20 M NaOH. | | EXAMPLE 2: Calculate the pH of a solution formed by mixing 130.0 mL of a 0.300 M C ₂ H ₅ NH ₂ solution with 70.0 mL of a | | $0.500 \text{ M C}_2\text{H}_5\text{NH}_3^+$ solution. (K _b of C ₂ H ₅ NH ₂ is $5.0 \times 10^{\textbf{-4}}$). | | | | | | | | | | | | | | PRACTICE: Which of the following molar ratios is the correct equilibrium ratio of BASE: ACID for a solution made of aniline (Kb = 3.8×10^{-10}) and anilinium nitrate where the pH is 4.80 ? | | a) 1:2 | | b) 3:5 | | c) 7:2 | | d) 2:1 | e) 5:3 ## **PRACTICE:** BUFFER SYNTHESIS CALCULATIONS 2 **EXAMPLE 1:** You are asked to go into the lab and prepare a buffer solution with a pH of 6.40 ± 0.2 . Which weak acid would be the best choice? - a) carbonic acid $K_a = 4.2 \times 10^{-7}$ - b) phenol $K_a = 1.3 \times 10^{-10}$ - c) ascorbic acid $K_a = 8.0 \times 10^{-5}$ - d) hydrosulfuric acid $K_a = 9.5 \times 10^{-8}$ - e) potassium hydrogen phthalate $K_a = 3.1 \times 10^{-6}$ **EXAMPLE 2:** Calculate the pH of a solution made by mixing 8.627 g of sodium butanoate in enough 0.452 M butanoic acid, $HC_4H_7O_2$, to make 250.0 mL of solution. The K_a of butanoic acid is 1.5 x 10^{-5} . - a) 4.75 - b) 4.82 - c) 5.00 - d) 2.58 - e) 4.65