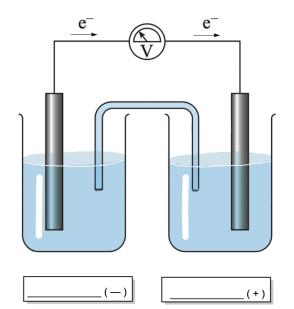
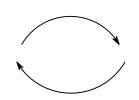
CONCEPT: GALVANIC CELLS

Galvanic/Voltaic Cell: A spontaneous cell that ______ or _____ electricity.


Ionization Energy _____

Anode _____

Producing 1 Voltage


[Anode] _____

[Cathode]

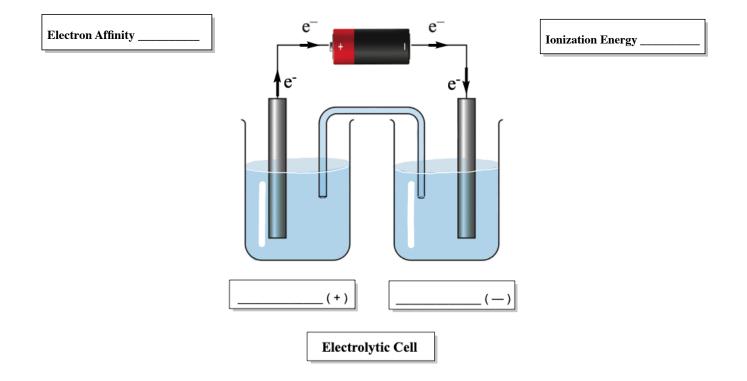
Electron Affinity _____

Cathode _____

Galvanic/Voltaic Cell

Cathode: $3 \text{Cu}^{2+}(\text{aq}) + 6 \text{e}^{-} \longrightarrow 3 \text{Cu}(\text{s})$

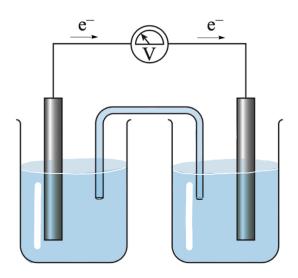
Anode: $2 \operatorname{Cr}(s) \longrightarrow 2 \operatorname{Cr}^{3+}(aq) + 6 e^{-}$


Reduction Half-Reactions	E° (V)	
$F_{2}(g) + 2e^{-} \rightleftharpoons 2F^{-}$ $O_{3}(g) + 2H^{+} + 2e^{-} \rightleftharpoons O_{2}(g) + H_{2}O$	2.890 2.075	
$MnO_4^- + 8H^+ + 5e^- \rightleftharpoons Mn^{2+} + 4H_2O$	1.507	
$Ag^+ + e^- \rightleftharpoons Ag (s)$	0.799	
Cu ²⁺ + 2e ⁻ ⇌ Cu (s)	0.339	
2H ⁺ + 2e ⁻ ⇌ H ₂ (g)	0.000	
$Cd^{2+} + 2e^- \rightleftharpoons Cd (s)$	-0.402	
K ⁺ + e ⁻ ⇌ K (s) Li ⁺ + e ⁻ ⇌ Li (s)	-2.936 -3.040	

CONCEPT: ELECTROLYTIC CELLS

In terms of spontaneity the following correlations between the following variables can be made:

ΔG°	K	Eº	ΔS°	Q vs. K	Reaction Classification	Cell Type
< 0	>1	> 0	> 0	Q < K		
> 0	<1	< 0	< 0	Q > K		
= 0	= 1	= 0	= 0	Q = K		


Electrolytic Cell: A non-spontaneous electrochemical cell that ______ electricity and so requires a battery.

CONCEPT: LINE NOTATION

Line notation is a quick, simple method to describe an electrochemical cell without having to draw it out in detail.

Lower Oxidation
StateHigher Oxidation
StateHigher Oxidation
StateLower Oxidation
State

Cathode:
$$3 \text{ Cu}^{2+}(\text{aq}) + 6 \text{ e}^{-} \longrightarrow 3 \text{ Cu}(\text{s})$$

Anode:
$$2 \operatorname{Cr}(s) \longrightarrow 2 \operatorname{Cr}^{3+}(aq) + 6e^{-}$$

EXAMPLE: Write the half reactions as well as the overall net ionic equation for the following line notation:

Cu | Cu²⁺ (aq, 0.0050 M) || Aq⁺(aq, 0.50 M) | Aq

PRACTICE: LINE NOTATION CALCULATIONS 1

EXAMPLE: Sketch the galvanic cell and determine the cell notation for the following redox reaction:

$$2 H^{+}(aq) + Fe(s) \longrightarrow H_{2}(g) + Fe^{2+}(aq)$$

PRACTICE: Sketch the galvanic cell and determine the line notation for the following redox reaction:

$$Ni^{2+}$$
 (aq) + Mg (s) \longrightarrow Ni (s) + Mg²⁺ (aq)