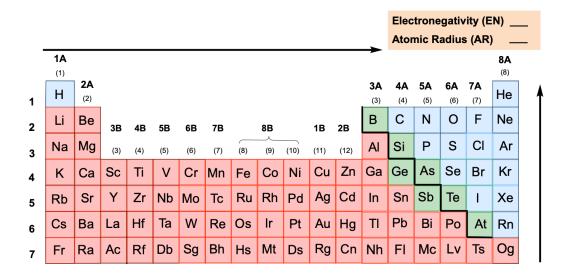
CONCEPT: BINARY ACID STRENGTH

STRONG ACIDS are considered Electrolytes so they ionize completely in water.


HCl (aq)
$$\xrightarrow{\text{H}_2\text{O}}$$
 H+ (aq) + Cl- (aq)

WEAK ACIDS are considered Electrolytes so they don't completely ionize in water.

$$HF + H_2O = F^-(aq) + H_3O^+(aq)$$

The strength of a **BINARY ACID** is based on the ______ or ____ of the nonmetal.

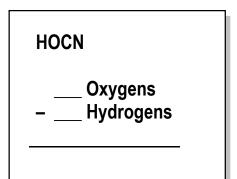
- Elements in the **SAME PERIOD** look at . The , the acidic.
- Elements in the **SAME GROUP** look at _______ . The ______, the ______ acidic.

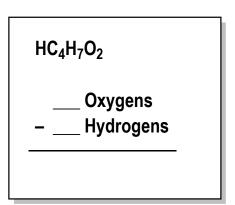
EXAMPLE 1: Which is the weakest acid from the following?

- a) H₂S
- b) HF
- c) H₂Te d) All would have the same acid strength.

EXAMPLE 2: Which of the following acids would be classified as the strongest?

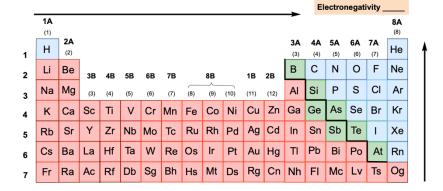
- a) CH₄
- b) NH₃
- c) H₂O
- d) HF
- e) PH₃

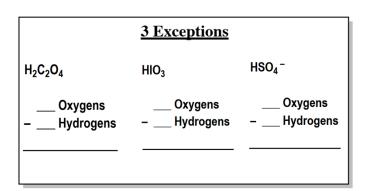

CONCEPT: OXYACID STRENGTH


The strength of **OXYACIDS** is based on the number of ______ or the _____ of the nonmetal.

• RULE: If my oxyacid has 2 or More _____ than ____ then my oxyacid is a _____ ACID.

HCIO₃


___ Oxygens
__ __ Hydrogens



When comparing the strengths of different oxyacids remember:

- If they have different number of oxygens then the _____ oxygen the _____ acidic
- If they have the same number of oxygens then the _____ electronegative the nonmetal the ____ acidic.

EXAMPLE 1: Rank the following oxyacids in terms of increasing acidity.

- a) HNO₃
- b) HC₇H₅O₂

c) H₂CO₃

d) HCIO₃