CONCEPT: BINARY ACID STRENGTH **STRONG ACIDS** are considered Electrolytes so they ionize completely in water. HCl (aq) $$\xrightarrow{\text{H}_2\text{O}}$$ H+ (aq) + Cl- (aq) **WEAK ACIDS** are considered Electrolytes so they don't completely ionize in water. $$HF + H_2O = F^-(aq) + H_3O^+(aq)$$ The strength of a **BINARY ACID** is based on the ______ or ____ of the nonmetal. - Elements in the **SAME PERIOD** look at . The , the acidic. - Elements in the **SAME GROUP** look at _______ . The ______, the ______ acidic. ## **EXAMPLE 1:** Which is the weakest acid from the following? - a) H₂S - b) HF - c) H₂Te d) All would have the same acid strength. **EXAMPLE 2:** Which of the following acids would be classified as the strongest? - a) CH₄ - b) NH₃ - c) H₂O - d) HF - e) PH₃ ## **CONCEPT: OXYACID STRENGTH** The strength of **OXYACIDS** is based on the number of ______ or the _____ of the nonmetal. • RULE: If my oxyacid has 2 or More _____ than ____ then my oxyacid is a _____ ACID. HCIO₃ ___ Oxygens __ __ Hydrogens When comparing the strengths of different oxyacids remember: - If they have different number of oxygens then the _____ oxygen the _____ acidic - If they have the same number of oxygens then the _____ electronegative the nonmetal the ____ acidic. **EXAMPLE 1:** Rank the following oxyacids in terms of increasing acidity. - a) HNO₃ - b) HC₇H₅O₂ c) H₂CO₃ d) HCIO₃