CONCEPT: DIPROTIC ACIDS

Diprotic acids and bases are compounds that can donate or accept _____ H⁺ ion.

For diprotic acids _____ their equations can be illustrated by:

$$H_2A (aq) + H_2O (I)$$
 \longrightarrow $HA^- (aq) + H_3O^+ (aq)$ $K_{a1} = \frac{Pr \ oducts}{Re \ ac \ tan \ ts} =$

$$HA^{-}$$
 (aq) + H_2O (I) A^{2-} (aq) + H_3O^{+} (aq) $K_{a2} = \frac{Pr \text{ oducts}}{Re \text{ ac tan ts}} = \frac{Pr \text{ oducts}}{Re \text{ oducts}} = \frac{Pr \text{ oducts}}{Re \text{$

For diprotic bases _____ their equations can be illustrated by:

$$A^{2-} (aq) + H_2O (aq) = HA^{-} (aq) + OH^{-} (aq) = \frac{Pr oducts}{Re ac tan ts} =$$

$$\label{eq:HA-QA} \text{HA-(aq) + H}_2\text{O (aq)} \quad \overline{\qquad} \quad \text{H}_2\text{A (aq) + OH-(aq)} \quad \text{$K_{\rm b2}$} = \frac{\text{Products}}{\text{Re}\,\text{ac}\,\text{tan}\,\text{ts}} =$$

Based on these equations the relationship between the different forms of diprotic species are:

As a result of these equations for diprotic acids and bases the relationship between Ka and Kb will be:

$$\boxed{\mathbf{K}_{a1} \cdot \mathbf{K}_{b2} = \mathbf{K}_{w}}$$

When dealing with diprotic acids:

- 1) H_2A can be treated as a monoprotic acid and we use ____ can be used to find pH.
- 2) HA ⁻ represents the intermediate form and we use _____ can be used to find pH.
- 3) A²⁻ represents the basic form and we use _____ can be used to find pH.

PRACTICE: DIPROTIC ACID CALCULATIONS 1
EXAMPLE 1: Sulfurous acid, H_2SO_3 , represents a diprotic acid with a $K_{a1} = 1.6 \times 10^{-2}$ and $K_{a2} = 4.6 \times 10^{-5}$. Calculate the
pH and concentrations of H ₂ SO ₃ , HSO ₃ ⁻ and SO ₃ ² when given 0.200 M H ₂ SO ₃ .

EXAMPLE 2: Determine the pH of 0.080 M Na₂S. Hydrosulfuric acid, H_2S , contains K_{a1} = 1.0 x 10⁻⁷ and K_{a2} = 9.1 x 10⁻⁸.

PRACTICE: DIPROTIC ACID CALCULATIONS 2
EXAMPLE: If $Ka_1 = 4.46 \times 10^{-7}$ and $Ka_2 = 4.69 \times 10^{-11}$ for H_2CO_3 what is the pH for a 0.15 M solution of NaHCO ₃ ?
PRACTICE: An unknown diprotic acid has an initial concentration of 0.025 M. What is the pH of the solution if pka₁ is 3.25 and pKa₂ is 6.82?
and prod 15 0.02 !
and μrα ₂ is 0.02 !
and μrα ₂ is 0.02 !
and μrα ₂ is 0.02 !
and μrα ₂ is 0.02 :
απα μινας το σ.σς :
and prog_ 15 0.02 !
anu praz is 0.02 :