CONCEPT: DETECTION OF GROSS ERRORS

Grubbs test is used to detect a single outlier in a single variable data set that follows some type of normal distribution.

Grubbs Test

$$G_{\text{Calculated}} = \frac{\left| \text{Questionable value} - \overline{x} \right|}{s}$$

$$G_{\text{Table}} < G_{\text{Calculated}}$$
 :: Disregard Value

$$G_{\text{Table}} > G_{\text{Calculated}}$$
 :: Hold Value

Number of Observations	(90% Confidence)	G _{Table} or G _{Critical} (95% Confidence)	(99% Confidence)
3	1.153	1.154	1.155
4	1.463	1.481	1.496
5	1.671	1.715	1.764
6	1.822	1.887	1.973
7	1.938	2.020	2.139
8	2.032	2.127	2.274
9	2.110	2.215	2.387
10	2.176	2.290	2.482

The Q-Test is another method used in finding outliers in very small, normally distributed, data sets.

• The number of measurements is normally between 3 to 7 values.

$$Q_{Calculated} = \frac{Gap}{Range} = \frac{\left| x_1 - x_{n+1} \right|}{r}$$

$$X_1 = \underline{\hspace{1cm}}$$
 $X_{n+1} = \underline{\hspace{1cm}}$

r = range (largest – smallest value in data set)

$$Q_{Table} < Q_{Calculated}$$
 :: Disregard Value

$$Q_{Table} > Q_{Calculated}$$
 :: Retain Value

Number of Observations	(90% Confidence)	Q _{Table} or Q _{Critical} (95% Confidence)	(99% Confidence)		
3	0.941	0.970	0.994		
4	0.765	0.829	0.926		
5	0.642	0.710	0.821		
6	0.560	0.625	0.740		
7	0.507	0.568	0.680		
8	0.468	0.526	0.634		
9	0.437	0.493	0.598		
10	0.412	0.466	0.568		

PRACTICE: DETECTION OF GROSS ERRORS CALCULATIONS 1

EXAMPLE 1: Wishing to measure the amount of caffeine in a cup of coffee you pour ten cups. From the data provided perform a Q-test to determine if the outlier can be retained or disregarded.

Caffeine per cup of coffee										
Cup of Coffee	1	2	3	4	5	6	7	8	9	10
ppm of coffee	81	83	78	82	72	79	77	81	82	78

EXAMPLE 2: White blood cells are the defending cells of the human immune system and fight against infectious diseases.

Provided below is the "normal" white blood cell counts for a healthy adult woman. Determine if the current white blood cell count is reasonable by Grubbs test.

"Normal" Days	Today
$5.1 \times 10^6 \text{ cells/}\mu\text{L}$ $5.4 \times 10^6 \text{ cells/}\mu\text{L}$ $4.9 \times 10^6 \text{ cells/}\mu\text{L}$ $5.2 \times 10^6 \text{ cells/}\mu\text{L}$ $5.3 \times 10^6 \text{ cells/}\mu\text{L}$ $5.0 \times 10^6 \text{ cells/}\mu\text{L}$	6.1×10 ⁶ cells/μL