CONCEPT: BASIC REDOX CONCEPTS

OXIDATION-REDUCTION (REDOX) reactions deal with the transfer of electrons from one reactant to another.

Reducing Agent (Reductant)

$$Li(s) \longrightarrow Li^+(aq) + e^-$$

Oxidizing Agent (Oxidant)

$$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$$

Electrical Charge

The units for electrical charge are measured in _____ (C).

$$(1.602 \times 10^{-19} \text{C}) \cdot (6.022 \times 10^{23} \text{mol}^{-1}) = \frac{9.647 \times 10^{4} \text{C}}{1 \text{ mole e}^{-1}}$$
Charge of 1 electron

Faraday Constant

$$q = n \cdot F$$
 $mole \quad Faraday \quad Constant$

Electrical Current

The units for electrical current are in _____ (A).

$$I = \frac{q}{t} \quad \frac{\text{Charge}}{\text{Time}}$$

Electrical Voltage

The relationship between work and voltage can be expressed as:

$$w = E \cdot q$$
Work Voltage Charge

The relationship between Gibbs Free Energy and electric potential can be expressed as:

$$\Delta G = -n \cdot F \cdot E$$
Gibbs mole Faraday Voltage
Free Energy e- Constant

Ohm's Law

The units for resistance are in _____(Ω). $I = \frac{E}{R}$ Voltage

$$I = \frac{E}{R} \frac{\text{Voltage}}{\text{Resistance}}$$

Power

Power represents work done per unit of time. The units for power are in _____ (W).

PRACTICE: BASIC REDOX CONCEPTS CALCULATIONS 1

EXAMPLE 1: What happens to the current in a circuit if a 3.0 V battery is removed and replaced by a 1.0 V battery?

EXAMPLE 2: If the voltage of a TE Series Enhanced Balance has a 240 V battery, what is the resistance in the circuit if the current is 0.80 A?

PRACTICE 1: Solve for the missing variable in the following circuit.

PRACTICE 2: Solve for the missing variable in the following circuit.

|--|

EXAMPLE 2: Copper can be electroplated at the cathode of an electrolysis cell by the half-reaction:

$$Cu^{2+}$$
 (aq) + 2 e - \to Cu (s)

How much time would it take for 525 mg of copper to be plated at a current of 4.3 A?

PRACTICE: A metal forms the salt MCl₃. Electrolysis of the molten salt with a current of 0.700 A for 6.63 h produced 3.00 g of the metal. What is the molar mass of the metal?

EXAMPLE 1: In the following reaction:
$Zn(s) + CuSO_4(aq) \rightarrow ZnSO_4(aq) + Cu(s)$
What is the maximum energy produced when 15.0 g of Zn is completely reacted in a Zn-Cu electrochemical cell that has an
average cell potential of 1.10 V?
EXAMPLE 2: A chemist weighing 110 lb takes her NMR sample from the first floor to the second floor, which is 12 meters
up, in 25 seconds. How much power has she generated?
EXAMPLE 3: Determine the amount of time (in mins) needed to produce 1.7 x 10 ² watts from 1500 J of work committed.

PRACTICE: BASIC REDOX CONCEPTS CALCULATIONS 3

CONCEPT: BALANCING REDOX REACTIONS

Generally, you will need to balance a redox reaction in an acidic or basic solution.

Balancing A Redox Reaction in Acidic Reactions:

STEP 1: Write the equation into 2 half-reactions.

STEP 2: Balance elements that are not oxygen or hydrogen.

STEP 3: Balance Oxygens by adding _____.

STEP 4: Balance Hydrogens by adding ______.

STEP 5: Balance overall charge by adding electrons (e ⁻) to the more ______ side. Both half reactions must have an _____ number of electrons.

STEP 6: Combine the half-reactions and cross out reaction intermediates.

Balancing A Redox Reaction in Basic Reactions:

Follow Steps 1-6 from above.

STEP 7: Balance remaining H⁺ by adding an equal amount _____ ions to both sides of the chemical reaction.

EXAMPLE: Balance the following redox reaction in acidic solution.

$$Br^{-}(aq) + MnO_4^{-}(aq) \longrightarrow Br_2(I) + Mn^{2+}(aq)$$

PRACTICE: BALANCING REDOX REACTIONS CALCULATIONS 1

EXAMPLE: Balance the following redox reaction in acidic solution.

$$Cr_2O_7^{2-}(aq) + H_2O_2(aq) \longrightarrow Cr^{3+}(aq) + H_2O(l) + O_2(g)$$

PRACTICE: Balance the following redox reaction in basic solution.

$$Cr_2O_7^{2-}$$
 (aq) + SO_3^{2-} (aq) \longrightarrow Cr^{3+} (aq) + SO_4^{2-} (aq)