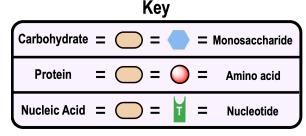
CONCEPT: MONOMERS & POLYMERS

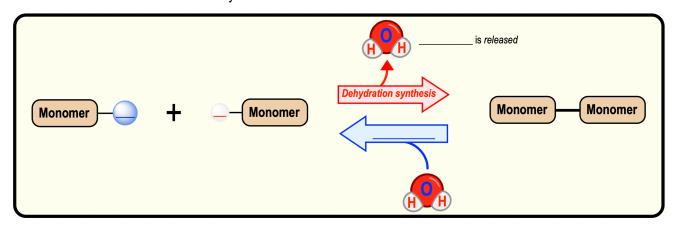

•Monomers: ______, individual building blocks that can be repetitively linked together to form polymers.

□ **Polymers**: *long* chains of _____ monomers *linked together*.

□ Monomers will _____ depending on the type of biomolecule polymer.

□ Carbohydrates, proteins, & nucleic acids use consistent monomers to form polymers, but _____ do NOT.

EXAMPLE: Monomers vs. Polymers.



Building & Breaking-Down Polymers

1) **Dehydration** ______: forms covalent bonds to *link* individual monomers & ______ a polymer.

2) ______: cleaves covalent bonds to ______ down a polymer.

EXAMPLE: Formation & Breakdown of Polymers.

PRACTICE: Which of the following statements concerning dehydration reactions and hydrolysis is correct?

- a) Dehydration reactions allow solutions to evaporate; hydrolysis reactions dissolve solutes.
- b) Dehydration reactions and hydrolysis reactions assemble polymers from monomers.
- Hydrolysis reactions create polymers from monomers; and dehydration reactions create monomers from polymers.
- d) Dehydration reactions create polymers from monomers; hydrolysis reactions break down polymers.

PRACTICE: _____ bonds are formed between monomers to form a polymer.

- a) lonic bonds.
- b) Covalent bonds. c) Hydrogen bonds. d) Hydrophobic bonds. e). Nuclear bonds.