CONCEPT: INTRODUCTION TO AEROBIC CELLULAR RESPIRATION

Aerobic Cellular Respiration: the	process of breaking-down glucose to make lots of _	
□ Aerobic : requires the presence of	nas (O ₂)	

□ Occurs in ______ stages, *most* of which occur inside of the _____.

EXAMPLE: Overall Chemical Equation for Aerobic Cellular Respiration.

Aerobic Cellular Respiration is a Redox Reaction

•The overall chemical equation for Aerobic Cellular Respiration is a ______ reaction.

□ By the end of the process, glucose is _____ while oxygen is _____.

EXAMPLE: Chemical Equation for Aerobic Cellular Respiration.

PRACTICE: Which one of the following molecules is a by-product of cellular respiration?

- a) Water.
- b) Glucose.
- c) Pyruvate.
- d) Oxygen.
- e) ADP.

PRACTICE: Which of the summary statements below describes the results of the following reaction?

$$C_6H_{12}O_6$$
 + 6 O_2 \rightarrow 6 CO_2 + 6 H_2O + Energy

- a) $C_6H_{12}O_6$ is oxidized and O_2 is reduced.
- c) CO₂ is reduced and O₂ is oxidized.

b) O₂ is oxidized and H₂O is reduced.

d) O₂ is reduced and CO₂ is oxidized.

CONCEPT: INTRODUCTION TO AEROBIC CELLULAR RESPIRATION

Stages of Aerobic Cellular Respiration

• Aerobic Cellular Respiration includes _____ metabolic pathways/reactions:

Remembering Stages of Aerobic Cellular Respiration

EXAMPLE: Which of the following options lists the stages of aerobic cellular respiration in the correct order?

- a) Glycolysis, electron transport chain & chemiosmosis, pyruvate oxidation, and Krebs cycle.
- b) Glycolysis, pyruvate oxidation, Krebs cycle, and electron transport chain & chemiosmosis.
- c) Pyruvate oxidation, electron transport chain & chemiosmosis, glycolysis, and Krebs cycle.
- d) Krebs cycle, electron transport chain & chemiosmosis, pyruvate oxidation, and glycolysis.

CONCEPT: INTRODUCTION TO AEROBIC CELLULAR RESPIRATION

Map of the Lesson on Cellular Respiration

EXAMPLE: Using the map above, which of the following occurs in the absence of oxygen (no oxygen)?

- a) Fermentation.
- c) Oxidative phosphorylation
- b) Aerobic respiration.
- d) O₂ serves as the final electron acceptor.

PRACTICE: Based on the map of cellular respiration, why do we need to breathe in oxygen?

- a) Oxygen is the final electron acceptor for lactic acid fermentation.
- b) Oxygen is the final electron acceptor for alcohol fermentation.
- c) Oxygen is the final electron acceptor for aerobic cellular respiration.
- d) Oxygen is not important for the purposes of cellular respiration.