

CONCEPT: ELECTRON TRANSPORT CHAIN

Electron Transport Chain (): 4 th step of aerobic respiration; consists of <i>mitochondrial inne</i>	er-membrane proteins.
□ Harnesses energy of	from NADH & FADH ₂ in a series of	reactions.
□ ETC uses energy from electrons to generate a gradient by pumping H+ into the intermembrane space.		
□ Final Electron Acceptor:	the final molecule that accepts the ETC's electrons is	gas (O ₂).
□ When Oxygen ga	s (O_2) serves as the <i>final electron acceptor</i> , it interacts with H $^+$ to	o form <i>water</i> (H ₂ O).

EXAMPLE: Electron Transport Chain.

Remembering the ETC

CONCEPT: ELECTRON TRANSPORT CHAIN

PRACTICE: In the electron transport chain, the final electron acceptor is:

a) H₂O.

b) CO₂.

c) H₂O.

d) O₂.

e) NAD+.

PRACTICE: Which of the following events takes place in the electron transport chain?

- a) The breakdown of glucose into six carbon dioxide molecules.
- b) The breakdown of NADH and FADH2 to carbon dioxide.
- c) Harnessing energy from high-energy electrons derived from glycolysis, pyruvate oxidation, and the Krebs cycle.
- d) Substrate-level phosphorylation.