CONCEPT: GLYCOLYSIS

/colysis: 1st step of cellu	ular respiration that breaks down	into 2	molecules
□ "Glyco" =	□ "Lysis" = to	.	
□ Glucose has	carbon atoms, all which end up being con	verted to CO ₂ in the 2 nd &	3 rd steps of respirati
□ ONLY step that o	ccurs outside mitochondria (in the cell's) & does	require Οχγς
Glucose	Glycolysis 2x Pyruvate		
Glycolysis occurs	mitochondria, in	the cell's	·

PRACTICE: Where does the first stage of aerobic cellular respiration take place within a cell?

a) Mitochondrial matrix.

- c) Intermembrane space.
- b) Inner mitochondrial membrane.
- d) Cytoplasm.

Phases of Glycolysis

 Glycolysis co 	consists of a series reactions, whi	ch can be grouped into _	phases:	
1) En	nergy Investment Phase: requires an	of energy by	using AT	ΓP molecules.
2) En	nergy Harvest Phase:	energy by forming	NADH &	ATP molecules.
	□ Net products from 1 single glucose molecule =		NADH, &	ATP molecul
	□ 2 pyruvates transported to the	ma	trix for the next s	step of <i>cellular resi</i>

EXAMPLE: Phases of Glycolysis.

CONCEPT: GLYCOLYSIS

Remembering Phases of Glycolysis

EXAMPLE: There is an energy investment step needed to get glycolysis started, requiring the use of _____ ATPs.

- a) Two.
- b) Four.
- c) Three.
- d) One.
- E) Five.

PRACTICE: Starting with one molecule of glucose, glycolysis results in the net production of which of the following sets of energy-containing products?

- a) 2 NAD+, 2 pyruvate, and 2 ATP.
- c) 4 NADH, 2 pyruvate, and 4 ATP.
- b) 2 NADH, 2 pyruvate, and 2 ATP.
- d) 6 CO₂, 2 pyruvate, and 2 ATP.

PRACTICE: Which of the following is a result of glycolysis?

- a) A net gain of four ATP per one glucose molecule.
- b) Conversion of FAD to FADH₂.
- c) Conversion of one glucose molecule to two pyruvate molecules.
- d) Conversion of NADH to NAD+.