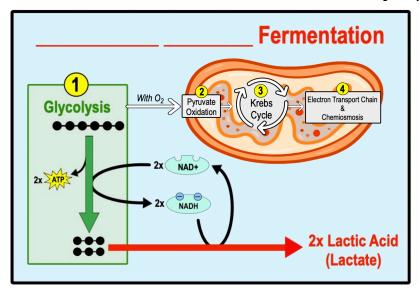

CONCEPT: FERMENTATION & ANAEROBIC RESPIRATION

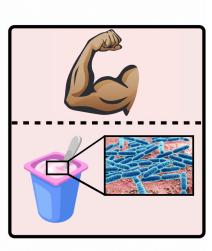
What Happens to Aerobic Organisms If There's No Oxygen?

●Without oxygen, aerobic cellular respiration	occur.	
□ The ETC gets "backed-up" (like a	jam) without O ₂ as the fina	al electron acceptor.
□ The amount of NADH	while the amount of NAD+	
●Fermentation: process that uses the electrons from NADH to reduce		& regenerate NAD+.
□ Depending on the organism, pyruvate ca	an be <i>reduced</i> to	_ acid or
□ Makes very ATP, s	so only <i>some uni</i> cellular organisms o	can survive on just fermentation.
□ Regeneration of NAD+ allows glycolysis to continue in the		of Oxygen.

EXAMPLE: Fermentation.

PRACTICE: Fermentation allows a cell to:

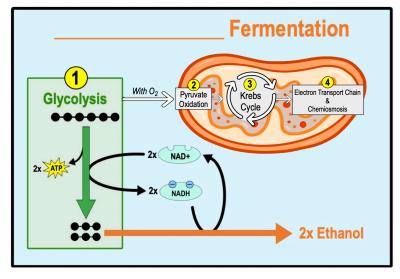

- a) Recycle NADH to NAD+ for glycolysis.
- b) Use NADH as a terminal electron acceptor.
- c) Reduce NAD+ to NADH for glycolysis.
- d) Synthesize ATP via ATP synthase.


CONCEPT: FERMENTATION & ANAEROBIC RESPIRATION

Lactic Acid Fermentation

•______ Acid Fermentation: pyruvate is reduced by NADH to form /actic acid/_____ & NAD+.

□ Occurs in *human* _____ *cells* & in bacteria that gives yogurt its sour taste.



Alcohol Fermentation

•______ Fermentation: pyruvate is reduced by NADH to form _____ & NAD+.

□ Produces *beer* from barley & *wine* from grapes.

PRACTICE: Which of the following describes a primary function of both lactic acid fermentation and alcohol fermentation?

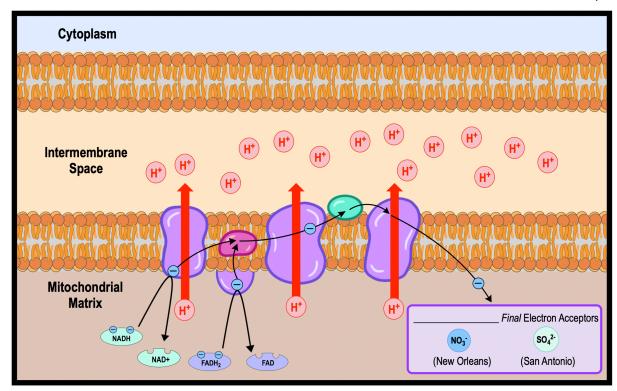
a) Reduction of NAD+ to NADH.

c) Reduction of FAD to FADH₂.

b) Oxidation of NADH to NAD+.

d) Hydrolysis of ATP to ADP.

CONCEPT: FERMENTATION & ANAEROBIC RESPIRATION


Anaerobic Respiration

•Some unicellular organisms can survive and make significant amounts of ATP _____ oxygen.

• _____ Respiration: uses other molecules (instead of O₂) as the final electron acceptor of ETC.

□ Alternative electron acceptors include: Nitrate (NO₃-), Sulfate (SO₄²-) & CO₂.

□ Makes _____ ATP than fermentation, but _____ ATP than aerobic cellular respiration.

PRACTICE: In which of the steps of aerobic and anaerobic cellular respiration does substrate-level phosphorylation occur?

- a) In glycolysis only.
- b) In the Krebs cycle only.
- c) In the electron transport chain only.
- d) In both glycolysis and the Krebs cycle.
- e) In both the Krebs cycle and the electron transport chain.

PRACTICE: Which of the following statements about NAD+ is true?

- a) NAD+ is reduced to NADH during glycolysis, pyruvate oxidation, and the Krebs cycle.
- b) NAD+ has more chemical energy than NADH.
- c) NAD+ donates high energy electrons to the electron transport chain.
- d) In the absence of NAD+, glycolysis can still function.