Forces That Shape the Lungs

- ◆ Lungs are passive and elastic, so how do they remain open?
 - Inwards and outwards forces ______ to keep the lungs open.

Inward forces: Lung's natural tendency is to collapse.

1. Elasticity/Recoil

Contain collagen & _____.

2. Surface Tension

Alveoli surface covered in fluid.

Surface tension pulls alveoli

(Reduced by

Outwards force: Keeps the lungs from _____.

Intrapleural Pressure

Pleural cavity: wet vacuum-sealed bag.

Visceral pleura attached to _____.

Parietal pleura attached to _____ wall.

Fluid creates _____ between visceral and parietal pleura.

- ◆ Intrapleural Pressure is ______: resists inward forces of elastic recoil and surface tension.
 - ▶ Air cannot enter pleural cavity; negative pressure keeps the lungs from ______.

EXAMPLE

For each factor listed below, write a "C" if it would contribute to the collapse of the lung. Write an "R" if it would contribute to resisting the lungs tendency to collapse.

Surface tension in alveoli:	
Intrapleural pressure:	
Pleural fluid:	
Elasticity/recoil of lungs:	
Pulmonary surfactant:	

PRACTICE

What factor is most important in keeping the lungs from collapsing?

a) Collagen.

c) Elastin.

b) Intrapleural pressure.

d) Fluid lining the alveoli.

PRACTICE

Individuals with COPD (chronic obstructive pulmonary disorder) have degraded elastin protein, causing their lungs to have less recoil. How would this affect intrapleural pressure and why?

- a) Intrapleural pressure would be more negative because less recoil would lead to less inward pull on the pleura.
- b) Intrapleural pressure would be less negative because less recoil would lead to less inward pull on the pleura.
- c) Intrapleural pressure would become positive because less recoil would lead to an outwards push on the pleura.
- d) Intrapleural pressure would become positive because less recoil would lead to less inward pull on the pleura.

Formalizing Pressure Relationships in the Lungs

◆ ____ distinct pressures:

Atmospheric pressure (P_{atm}) :

Amount of pressure in the air.

- ◆ ____: (760 mm Hg).
- Other pressures are always compared to P_{atm}.

lacktriangle As long as $P_{pul} = P_{ip}$, lungs stay inflated with air.

Intrapulmonary pressure (P_{pul}): Pressure in lungs.

- ◆ P_{pul} ____ P_{atm} between inspiration & expiration because it's an ____ system.
- ♦ Difference from $P_{atm} = 0$ mmHg (+ or ~2 mm Hg).

Intrapleural pressure (P_{ip}): Pressure in pleural cavity.

- ◆ P_{ip} ____ P_{pul} because of negative pressure created by resisting the recoil of the lungs.
- ◆ Difference from $P_{atm} \cong -4$ to -6 mm Hg.

EXAMPLE

Pneumothorax is a pathology caused by air entering the pleural cavity, for example, if air entered a hole in the chest wall through a stab wound. The air in the pleural cavity results in the collapse of a lung. For a patient experiencing pneumothorax, how would you expect the pressure in each location to change?

For each pressure, write "increase", "decrease", or "no change" on the lines below.

Atmospheric pressure: ______
Intrapulmonary pressure: _____
Intrapleural pressure: _____

In simple terms, if there is air in the pleural cavity, why does the lung collapse?

PRACTICE

True or false: if false choose the answer that best corrects the statement.

In healthy lungs, the intrapulmonary pressure is always lower than the intrapleural pressure.

- a) True.
- b) False, the intrapulmonary pressure is only lower during some parts of ventilation.
- c) False, the intrapulmonary pressure is always greater than the intrapleural pressure.
- d) False, the intrapulmonary and intrapleural must be the same for ventilation to occur.

PRACTICE

Pleural effusion is a condition where fluid accumulates in the pleural cavity. Which pressure or pressures would you expect to be most directly impacted by this fluid accumulation?

- a) Intrapleural pressure.
- b) Intrapulmonary pressure.
- c) Both A & B are correct.
- d) Neither pressure would be impacted.