
TOPIC: RESTING MEMBRANE POTENTIAL

- Recall: Membrane Potential: Voltage from charge separation between interior and exterior of a cell.
- Resting Potential: Membrane potential of a cell when not stimulated. Approx. _____ mV.
 - At resting potential, _____ of the cell is more negative than exterior of the cell.
 - Created by:
 - Differences in ionic composition of intracellular and extracellular fluids.
 - Differences in plasma membrane ______ to ions.
 - Stabilized by Na+/K+ATPase _____ concentration gradients for Na+ and K+.

EXAMPLE: Which of the following is the MOST accurate regarding the sodium potassium pump?

- a) The sodium potassium pump creates resting potential by ejecting 3 K+ ions and transporting 2 Na+ ions into the cell.
- b) The sodium potassium pump is the main factor in creating resting potential.
- c) The sodium potassium pump directly impacts resting potential by allowing more negatively charged ions into the cell.
- d) The sodium potassium pump stabilizes resting potential in a neuron.

PRACTICE: Which of the following is the MOST important factor in generating resting membrane potential?

a) Na+ concentration gradient.

c) K+ electrical gradient.

b) K+ concentration gradient.

d) Na+/K+ ATPase.