CONCEPT: CARBOHYDRATES - Carbohydrates: carbon-based-molecules hydrated with many _____ groups (-OH). □ Also referred to as ______, the Greek word meaning "sugars". ●When " ______" was originally coined, it referred to compounds with the formula C_n(H₂O)_n. \Box **carbohydrates**: fit $C_n(H_2O)_n$ formula exactly (ex. glucose). - **EXAMPLE:** Simple vs. Complex Carbohydrates. # **Carbo-Hydrates** \Box **______ carbohydrates**: can slightly *differ* from $C_n(H_2O)_n$ & can also have _____, N or S atoms too. **PRACTICE:** Which of the following chemical formulas represents that of a simple carbohydrate? - a) $C_2H_2O_2$. - b) $C_6H_{12}O_6$. c) $C_5H_4O_3$. - d) C₃H₆O₉. ## 3 Size Classes of Carbohydrates - 1) _____saccharide: a single carbohydrate unit or _____ (ex. glucose). - 2) _____ saccharide: 2 to ~____ covalently linked monosaccharides. - 3) **saccharide**: 20 covalently linked monosaccharides (#### **CONCEPT: CARBOHYDRATES** ### Formation & Breakdown of Polysaccharides | ■Recall: Dehydration Synthes | sis: links | saccharides together to | polysaccharides. | |------------------------------|------------|--|-------------------| | | Bonds: | the covalent bonds that link monosacci | harides together. | | □ Hydrolysis: | do | own polysaccharides into individual mon- | osaccharides. | **EXAMPLE:** Formation of a maltose from two glucose molecules. **PRACTICE:** Monosaccharides are linked together via a ______ reaction, forming a _____bond. - a) Hydrolysis; Glycosidic. - b) Dehydration synthesis; Hydrogen. - c) Hydrolysis; Peptide. - d) Dehydration synthesis; Glycosidic. - e) Hydrolysis; Hydrogen. PRACTICE: Which of the following chemical reactions results in energy release when glycosidic bonds are broken? - a) Condensation reaction. - b) Dehydration synthesis reaction. - c) Hydrolysis reaction. - d) Hydrogen bonding. #### **CONCEPT: CARBOHYDRATES** #### **Carbohydrate Functions** - •Carbohydrates can be *structurally* & *functionally* ______, but have _____ main functions: - 1) Structural Support: used to build ______ (ex. cellulose, chitin, etc.). - 2) **Energy-Storage**: used for -term -storage (ex. starch & glycogen). **EXAMPLE:** Polysaccharides in Plants and Animals. **PRACTICE:** Animal cells store energy in the form of ______, and plant cells store energy in the form of _____. - a) Sucrose; glucose. - b) Disaccharides; monosaccharides. - c) Starch; glycogen. - d) Cellulose; chitin. - e) Glycogen; starch. PRACTICE: Which polysaccharide is an important component in the structure of lobsters and insects? - a) Chitin. - b) Cellulose. - c) Starch. - d) Glycogen. - e) Polypeptides.