Introduction to Regulation of Glomerular Filtration

• GFR is regulated by a number of mechanisms:

	Internal Factors (Renalregulation)	External Factors
Purpose	Kidneys regulate renal blood flow. Maintain GFR	Maintain systemic blood pressure. Maintain GFR
Effect on GFR	Keeps GFR consistent through changes in blood pressure.	Adjusts following significant changes in blood pressure, volume, and electrolyte imbalance.
Examples	The myogenic mechanism. 2. The tubuloglomerular mechanism.	3. Neural mechanisms. 4. The renin-angiotensin-aldosterone mechanism.

◆ Each of these mechanisms works by controlling the of the afferent	t and/or efferent arterioles
---	------------------------------

FV	$\mathbf{A} \mathbf{B} \mathbf{A}$		
	ΔW	1121	- 1

Generally speaking, renal autoregulation maintains glomerular filtration rate ______, whereas external factors regulate glomerular filtration rate _____.

- a) Directly; indirectly.
- b) Indirectly; directly.
- c) Automatically; consciously.
- d) Slowly; quickly.

Arteriolar Diameter and GFR

- ◆ Changes in arteriolar diameter affect glomerular filtration ______, which in turn affects filtration _____.
- Imagine the glomerular capsule is a sink, where:
- ▶ The faucet is the __fferent arteriole.
- ▶ The basin is the glomerulus.
- ▶ The drain is the __fferent arteriole.

	Vasoconstriction	Vasodilation		
Afferent	"Turn the faucet"	"Turn the faucet"		
	↓ Decreased GFP and GFR	↑ Increased GFP and GFR		
	"The drain is"	"The drain is too"		
Efferent				

Internal Regulation - The Myogenic Mechanism

- ◆ Adjusts afferent arteriole in response to minor changes in blood pressure.
- ◆ Recall: To maintain homeostasis, vascular smooth muscle responds to changes in blood pressure.
 - Contracts when stretched and _____ when not stretched.
- ◆ Stimulus: Stretching or decrease of stretch in the _____ arteriole.

EXAMPLE

True or False (if false, choose the answer that corrects the statement): The main stimulus that triggers the myogenic mechanism is a high concentration of sodium delivery to the glomerular capillaries.

- a) True
- b) False: The main stimulus that triggers the myogenic mechanism is an increase or decrease in stretch of the efferent arteriole.
- c) False: The main stimulus that triggers the myogenic mechanism is an increase or decrease in stretch of the afferent arteriole.
- d) False: The main stimulus that triggers the myogenic mechanism is a low level of sodium in the filtrate.

PRACTICE

The myogenic mechanism is triggered by changes in the stretch of the afferent arteriole. This is the direct result of:

- a) Changes in glomerular filtration rate.
- b) Changes in glomerular pressure.
- c) Changes in systemic blood pressure.
- d) Electrolyte levels.

Internal Regulation - The Tubuloglomerular Mechanism

 Secondary mechanism that adjusts afferent arteriole in response to minor changes in blood pressure. ◆ Recall: Macula densa cells in the renal _____ respond to NaCl levels. Note: In this mechanism. Stimulus: Changes in levels of NaCl near the _____ densa cells. the renal tubule acts on the **glomerulus**. Increase in systemic Decrease in systemic Key blood pressure. blood pressure. 1 **Blood Pressure** As GFR increases -As GFR decreases -**Stimulus** filtrate _____ filtrate volume increases. creases. **Physiological** 1 1 Response Increased delivery of Decreased delivery of Effect on GFR to macula densa NaCl to _____ cells. densa cells. 1 1 Macula densa cells release Macula densa cells constrictor releasing chemicals. vasoconstrictor chemicals. 1 Constriction of of arteriole. afferent arteriole

EXAMPLE

Fill in the blanks: Increased delivery of NaCl to the macula densa cells is indicative of ______. This would trigger the tubuloglomerular mechanism, which would cause _____ of the afferent arteriole.

GFR increased to

normal range.

- a) Decreased glomerular filtrate rate; constriction.
- b) Increased glomerular filtrate rate; constriction.
- c) Decreased glomerular filtrate rate; dilation.

decreased to

normal range.

d) Increased glomerular filtrate rate; dilation

External Regulation – Neural Mechanisms

- ◆ <u>Stimulus:</u> _____ sympathetic activity overrides renal autoregulation.
- ◆ Sympathetic activation triggers release of _____epinephrine constricts blood vessels in non-essential organs.
 - Including afferent and efferent arterioles.
- ◆ Constriction of **both** arterioles GFR:
 - ▶ Helps body minimize fluid loss and preserve blood volume and pressure at ______ organs.

EXAMPLE

Activation of the sympathetic nervous system leads to a decrease in glomerular filtration rate. Why is decreasing GFR advantageous in potentially stressful, dangerous, or arousing situations?

- a) By reducing glomerular filtration rate, the body prevents hypertension.
- b) By increasing fluid loss, it makes you lighter in case you need to run away from danger.
- c) It helps minimize fluid loss and preserves blood volume and pressure at vital organs.
- d) It actually isn't advantageous, and seems to be a leftover 'quirk' of evolution.

Б	ь	м	CT	ICI	i
ш	17.7		UΙ	IUI	I

The sympathetic nervous system releases ______, which causes constriction of the afferent and efferent arterioles.

- a) Acetylcholine.
- b) Epinephrine.
- c) Norepinephrine.
- d) Dopamine.

External Regulation – Renin-Angiotensin-Aldosterone Mechanism

- ◆ Recall: The renin-angiotensin-aldosterone mechanism is the body's main mechanism for increasing blood pressure.
- ◆ Stimulus: Sympathetic activity or detection of _____ blood pressure.
- This mechanism works as follows:

Which of the following hormones is responsible for increasing reabsorption of Na ⁺ in the distal tubule and collecting				
duct?				
a) Angiotensin-I.	c) Aldosteror	ne.		
b) Angiotensin-II.	d) Parathyroi	d) Parathyroid hormone.		
PRACTICE				
Angiotensin-II directly increases glomerular filtration	pressure by	the	arteriole.	
a) Constricting; afferent.				
b) Constricting; efferent.				
c) Dilating; afferent.				
d) Dilating; efferent.				