CONCEPT: ACIDS AND BASES

- ●Many biological processes are strongly affected by the _____ of dissolved H⁺ in the aqueous solution.
 - □ Acids & bases directly affect the [H⁺].

Acids

•______ a solution's concentration of H⁺ ions.

EXAMPLE: Addition of Hydrochloric Acid (HCI) to Water.

Bases

•_____ a solution's concentration of H+ ions.

□ Example of a Base is Sodium hydroxide (_____).

EXAMPLE: Addition of Sodium Hydroxide (NaOH) to water.

PRACTICE: Which of the following reactions is most consistent with that of a base?

a)
$$NH_4^+ \rightarrow NH_3 + H^+$$

b)
$$H_2CO_3 \rightarrow HCO_3^- + H^+$$

c) NaOH
$$\rightarrow$$
 Na⁺ + OH⁻

d)
$$HCI \rightarrow H^+ + CI^-$$

CONCEPT: ACIDS AND BASES

PRACTICE: The addition of an acid like HCl to an aqueous solution (pure water) would result in:

- a) An increase in pH only.
- b) Both the release of H+ and an increase in pH.
- c) Both the release of H+ and a decrease in pH.
- d) The release of H+ into the solution only.
- e) A decrease in pH only.

PRACTICE: In what way(s) do bases work to increase the pH of a solution?

- a) Increasing the concentration of hydroxide ions.
- b) Decreasing the concentration of hydrogen ions.
- c) Decreasing the concentration of hydroxide ions.
- d) Increasing the concentration of hydrogen ions.
- e) Both a & b.
- f) Both c & d.