CONCEPT: PYRUVATE OXIDATION

• Recall: Glycolysis results in _____ pyruvate molecules, which are then transported to the mitochondrial _____

• Pyruvate Oxidation: 2nd step of cellular respiration that converts each *pyruvate* into a molecule of *Acetyl*-_____.

□ Occurs in *mitochondrial matrix* & produces ___ acetyl-CoA, ___ NADH, & ___ CO₂ molecules (per 1 glucose).

EXAMPLE: Pyruvate Oxidation.

PRACTICE: Each of the following describes the pyruvate oxidation reaction except that _

- a) It connects glycolysis to the citric acid cycle.
- d) This reaction occurs within the cytoplasm.
- b) Each pyruvate is converted to an acetyl-CoA molecule. e) Carbon dioxide is released as a by-product.

c) NAD+ is reduced to NADH.

PRACTICE: In aerobic cellular respiration, pyruvate molecules must be transformed through a process called pyruvate oxidation before they can be broken down in the Krebs Cycle. What are the products of pyruvate oxidation?

a) Acetyl CoA, O₂, and ATP.

d) Acetyl CoA, NADH, and CO₂.

b) Acetyl and CO₂.

e) Acetyl CoA, NAD+, ATP, and CO₂.

c) Acetyl CoA, FADH₂, and CO₂.