CONCEPT: PYRUVATE OXIDATION • Recall: Glycolysis results in _____ pyruvate molecules, which are then transported to the mitochondrial _____ • Pyruvate Oxidation: 2nd step of cellular respiration that converts each *pyruvate* into a molecule of *Acetyl*-_____. □ Occurs in *mitochondrial matrix* & produces ___ acetyl-CoA, ___ NADH, & ___ CO₂ molecules (per 1 glucose). **EXAMPLE:** Pyruvate Oxidation. **PRACTICE:** Each of the following describes the pyruvate oxidation reaction except that _ - a) It connects glycolysis to the citric acid cycle. - d) This reaction occurs within the cytoplasm. - b) Each pyruvate is converted to an acetyl-CoA molecule. e) Carbon dioxide is released as a by-product. c) NAD+ is reduced to NADH. **PRACTICE**: In aerobic cellular respiration, pyruvate molecules must be transformed through a process called pyruvate oxidation before they can be broken down in the Krebs Cycle. What are the products of pyruvate oxidation? a) Acetyl CoA, O₂, and ATP. d) Acetyl CoA, NADH, and CO₂. b) Acetyl and CO₂. e) Acetyl CoA, NAD+, ATP, and CO₂. c) Acetyl CoA, FADH₂, and CO₂.