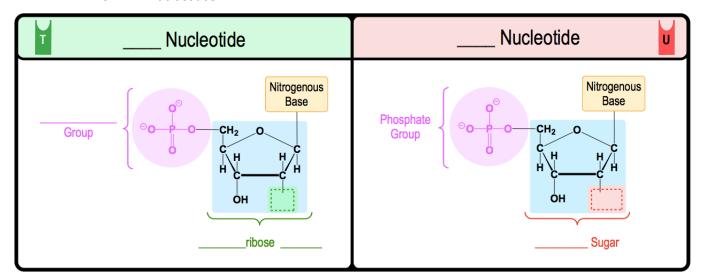

●Nucleic Acids: a class of biomolecule polymers that store/encode ______ information (ex. DNA).

□ _____: monomers or "building blocks" of nucleic acid polymers.

□ Nucleic acid polymers have directionality (_____ & ____ ends).

EXAMPLE: Formation of nucleic acids from nucleotide monomers.


Nucleotides

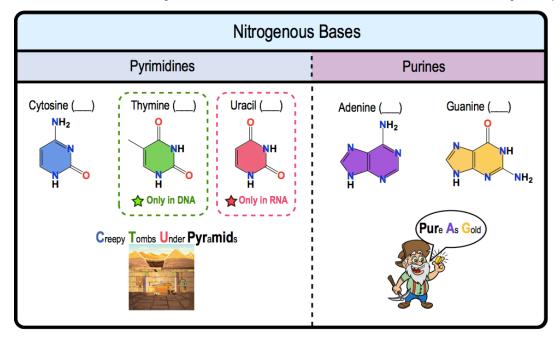
• Nucleotide monomers consist of _____ components:

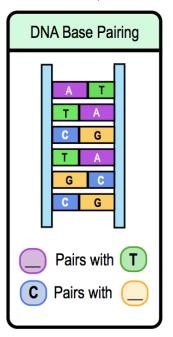
1) a ______ group. 2) a _____ sugar. & 3) a _____ base.

□ Deoxyribonucleic Acid (_____) & Ribonucleic Acid (_____) use different sugars in their nucleotides.

EXAMPLE: DNA vs. RNA Nucleotides.

EXAMPLE: What is the difference between the sugar group in DNA and the sugar group in RNA?


- a) The sugar group in DNA is a hexose, while the sugar group in RNA is a pentose.
- b) The sugar group in DNA has an extra hydroxyl group than the sugar group in RNA.
- c) The sugar group in DNA has one less hydroxyl group than the sugar group in RNA.
- d) The sugar group in DNA contains one less carbonyl group than the sugar group in RNA.
- e) The sugar group in DNA and RNA are not different.


PRACTICE: Which of the following descriptions best fits the class of molecules known as nucleotides?

- a) A nitrogenous base & a phosphate group.
- b) A nitrogenous base & a sugar.
- c) A nitrogenous base, phosphate group & a sugar.
- d) A nitrogenous base, a carbohydrate, & a sugar.

5 Nitrogenous Bases

- •_____ different nitrogenous bases are grouped as pyrimidines or purines.
 - 1) **P___rimidines**: *single*-ringed molecules.
- ጺ
- 2) **Purines**: *double*-ringed molecules.
- ●In DNA's structure, nitrogenous bases on different DNA strands base-_____ together (A with T & C with G).

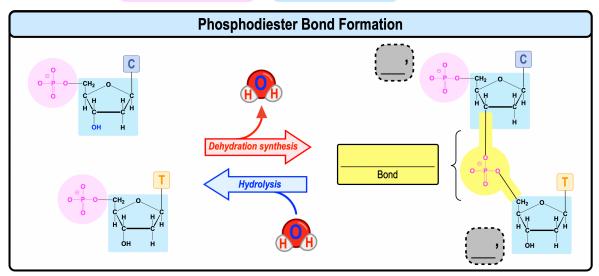
EXAMPLE: The purine nitrogenous bases are _____:

a) Adenine and thymine.

- b) Adenine and uracil.
- c) Guanine and thymine.

- d) Guanine and cytosine.
- e) Adenine and guanine.
- f) Uracil and thymine.

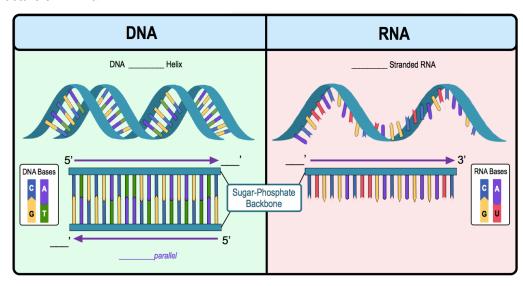
PRACTICE: The four nitrogenous bases commonly found if DNA are:


- a) Adenine, thymine, cytosine, uracil
- b) Uracil, adenine, cytosine, guanine.
- c) Uracil, cytosine, guanine, thymine.
- d) Adenine, thymine, cytosine, guanine.
- e) None are correct.

Formation & Breakdown of Nucleic Acids

- ●Recall: Dehydration Synthesis: links _______together to ______nucleic acid polymers.

 □ _______Bonds: the covalent bonds that link nucleotides together.


 □ Results in the sugar-phosphate "______".
 - □ Has directionality of _____' phosphate end → ____' hydroxyl end.

DNA vs. RNA

- ●Deoxyribonucleic acid (_____) stores genetic/hereditary information in the cell.
 - □ Forms a _____-helix with 2 ____-parallel strands connected by base-pair hydrogen bonding.
- ●Ribonucleic acid (_____) has a variety of functions including acting as a template for synthesizing proteins.
 - □ Usually forms a ______-stranded nucleotide chain.

EXAMPLE: Structure of DNA & RNA.

PRACTICE: Which of the following statements about DNA structure is true?

- a) The nucleic acid strands in a DNA molecule are oriented antiparallel to each other.
- b) Nucleic acids are formed through phosphodiester bonds that link complementary nucleobases together.
- c) Hydrogen bonds formed between the sugar-phosphate backbones of the two DNA chains stabilize the structure.
- d) The pentose sugar in DNA is ribose (containing two hydroxyl groups).