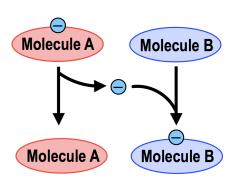

CONCEPT: REDOX REACTIONS


Oxidation-Reduction () Reaction: transfers	(e-) between molecules
□ Oxidation: the process of	one or more electrons.
□ Reduction: the process of	one or more electrons (overall charge is reduced).
□ Oxidation & reduction reactions always occur	(at the same time).

EXAMPLE: Redox Reaction (LEO the Lion goes GER).

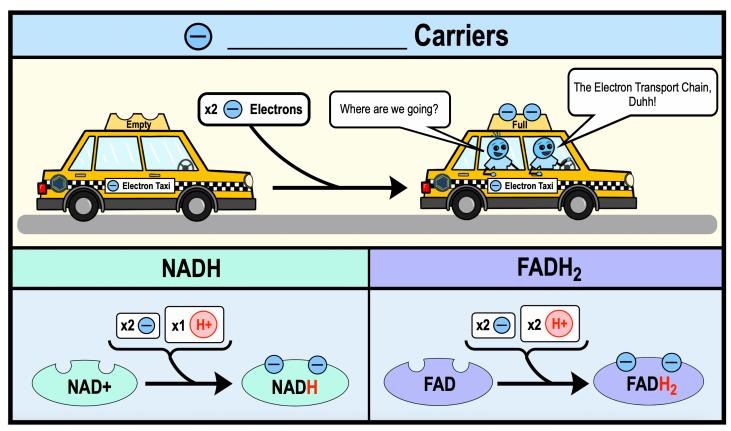
EXAMPLE: Which of the following molecules is oxidized and which is reduced?

- a) Molecule A is oxidized; Molecule B is reduced.
- b) Molecule A is reduced; Molecule B is oxidized.
- c) Both Molecule A & Molecule B are reduced.
- d) Both Molecule A & Molecule B are oxidized.

PRACTICE: Oxidation is the	, and reduction is the	
I INACTICE. Oxidation is the	. and reduction is the	

- a) Gain of electrons; Loss of electrons.
- c) Loss of electrons; Gain of electrons.
- b) Gain of protons; Loss of protons.
- d) Gain of oxygen; Loss of oxygen.

PRACTICE: When glucose donates electrons to NAD+ creating NADH, the glucose molecule becomes:


- a) Hydrolyzed.
- b) Oxidized.
- c) Neutral.
- d) Reduced.

CONCEPT: REDOX REACTIONS

Electron Carriers: NADH & FADH₂

●Many biological processes (including Cellular Respiration) conduct redox reactions using electron				
□ Electron carriers such as	&	each carry/transport	electrons.	
□ NADH & FADH₂ can shuttle electrons to different locations within a cell like an electron "" cab.			" cab.	
□ NAD+ & FAD are the	forms o	of NADH & FADH ₂ , respectively.		

EXAMPLE: Formation of NADH and FADH₂.

- □ Helpful Memory Tool: think that NAD____ and FAD____2 are just a little bit "____eavier."
- □ During Cellular Respiration, electrons carried by NADH & FADH₂ go to the Electron Transport Chain.

PRACTICE: An electron carrier before it harvests energy from glucose molecules in a series of gradual steps is:

- a) Pyruvate.
- b) AMP.
- c) ATP.
- d) NAD+.
- e) NADH.