Partial Pressure

- ◆ Movement of gases (O₂ and CO₂) depends on _____ gradients.
 - ▶ Recall: molecules move down a gradient _____ process.
 - ▶ For diffusion of gas molecules, we care about partial ______; NOT ______.
- ◆ Dalton's Law of Partial Pressure: in a mixture, total pressure = _____ of individual pressures.

$$P_{\text{TOTAL}} = P_{\text{GAS A}} + P_{\text{GAS B}} + \dots$$

	Atmospheric Pressure = 760 mm Hg			
Gas	Concentration (%)	Partial Pressure		
Nitrogen	78.08			
Oxygen	20.95			
Argon	0.93			
Carbon Dioxide	0.04			
Total	100			

EXAMPLE

The following gas mixtures are contained in two chambers separated by a permeable membrane. For each gas listed, draw an arrow in the direction you would expect the molecules to move by diffusion.

	Gas A			Gas B	
Gas	Concentration	Partial Pressure	Direction of	Concentration	Partial Pressure
	(%)	(mm Hg)	Difussion	(%)	(mm Hg)
Nitrogen	60	300		40	400
Hydrogen	20	100		10	100
Helium	15	75		5	50
Oxygen	5	25		45	450
Total	100	500		100	1000

PRACTICE

Gas A and Gas B are both mixtures separated by a permeable membrane. Gas A contains 40% nitrogen at a partial pressure of 300 mm Hg. Gas B contains 80% nitrogen at partial pressure of 200 mm Hg. Given this information, in which direction do you expect to see a net movement of nitrogen and why?

- a) From Gas A to Gas B because the total pressure of Gas A is greater than Gas B.
- b) From Gas B to Gas A because Gas B has a higher concentration of nitrogen than Gas A.
- c) From Gas B to Gas A because 80% of 200 mm Hg > 40% of 300 mm Hg.
- d) From Gas A to Gas B because the partial pressure of nitrogen in Gas A is greater than in Gas B.

Pressures: Dalton's and Henry's Laws

♦ ___ laws explain the movement of molecules by respiration:

Dalton divides the pressure; Henry hydrates it.

1. **Dalton's Law:** partial _____ of a gas is equal to its percent composition multiplied by the total pressure.

Pressure 760 mm Hg

$$P_{0_2} = 21\% \times 760 \text{ mm Hg} = P_{0_2} = \underline{\qquad} \text{ mm Hg}$$

2. Henry's Law: the amount of a gas that _____ in a liquid is proportional to the ____ pressure.

(Specific values depend on solubility and _____).

EXAMPLE

When climbers summit Mt. Everest, they often use an oxygen mask to increase the amount of O_2 that they inspire with each breath. The table below gives the concentration of O_2 and the atmospheric pressure under three conditions. Use the table to calculate the P_{O_2} under each condition. Then, answer the questions below.

	Sea Level	Everest with supplemental O ₂	Everest without supplemental O ₂
Concentration of oxygen	20.9%	50%	20.9%
Total atmospheric pressure	760 mm Hg	235 mm Hg	235 mm Hg
Partial pressure of oxygen			

- a) Using the information from the table, under which two scenarios would you expect the amount of oxygen dissolved in the blood to be the most similar.
- b) What law allowed you to calculate the partial pressures?
- c) What law allowed you to predict how much oxygen would dissolve in the blood? _____

PRACTICE

Air in the alveoli is approximately 5.2% CO₂. Given that information along with the total air pressure in the alveoli, which law would allow you to calculate the partial pressure of CO₂?

a) Henry's Law.

c) Purkinje's Law.

b) Dalton's Law.

d) Boyle's Law.

PRACTICE

How is Henry's law related to the amount of gas that can be exchanged in the alveoli?

- a) Henry's law states that the small volume of the alveoli will cause an increase the total pressure, allowing gases to be more easily dissolved by the blood.
- b) Henry's law allows us to predict the relative amount of a gas that will dissolve in the blood when given its partial pressure.
- c) Henry's law states that molecules will always move towards an area of lower pressure.
- d) Henry's law states that, in a mixture, the total pressure can be divided into the partial pressures of each gas; this determines how much of each gas will be absorbed by the blood.

PRACTICE

Gas A is 40% oxygen and 10% CO_2 . It has a total pressure of 500 mm Hg. Gas A is in contact with a with a liquid containing oxygen at a partial pressure of 100 mmHg and CO_2 at a partial pressure of 25 mm Hg. In which direction will O_2 and CO_2 diffuse in this situation?

- a) Oxygen will dissolve into the liquid, while CO₂ will move from the liquid into the gas.
- b) CO_2 will dissolve into the liquid, while O_2 will move from the liquid into the gas.
- c) Both O₂ and CO₂ will move from the gas into the liquid.
- d) Both O₂ and CO₂ will move from the liquid into the gas.