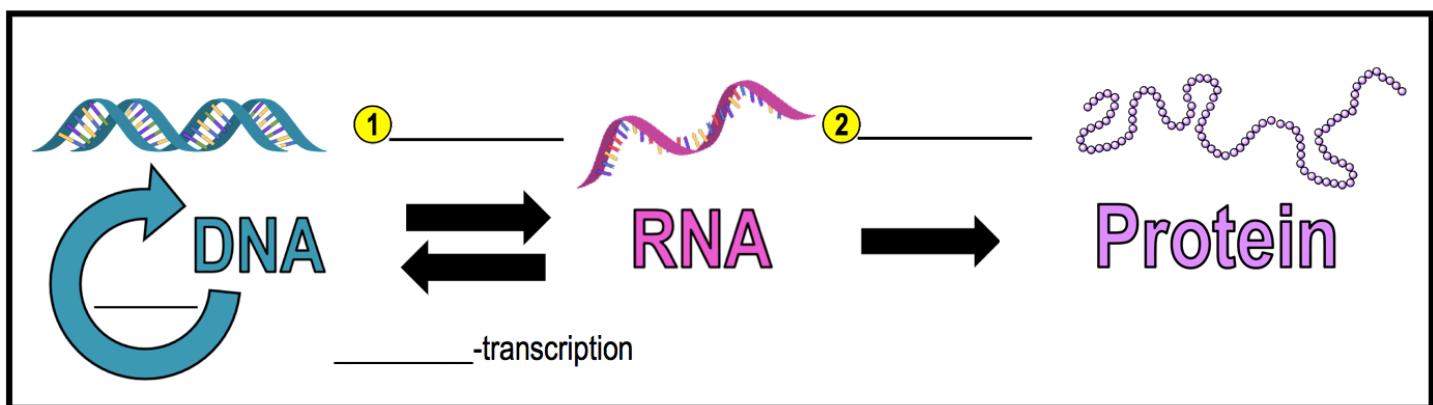


CONCEPT: CENTRAL DOGMA


- **Central Dogma** of biology refers to the _____ flow of biochemical info from *DNA* to *protein*.

① **Transcription:** process that builds _____ using DNA as the coding template.

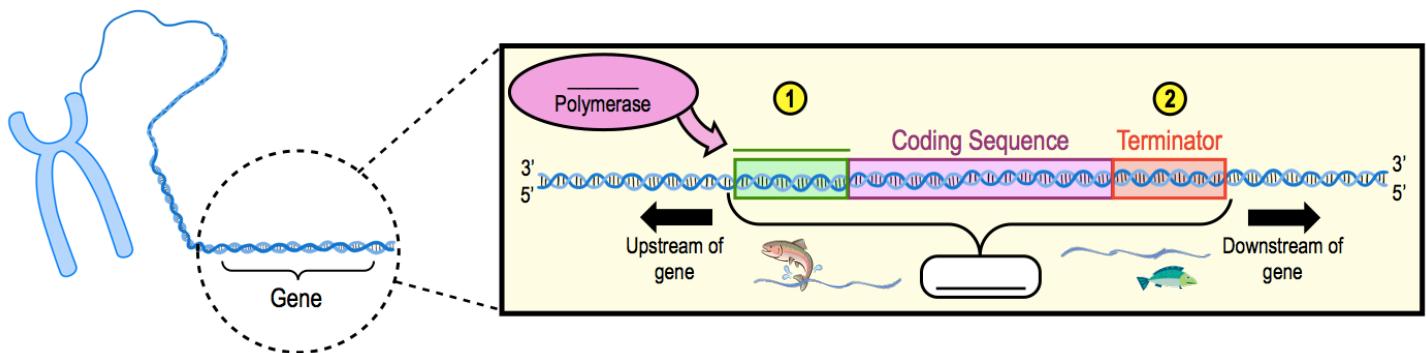
② **Translation:** process that builds _____ using the encoded *messages* of RNA (mRNA).

□ Sometimes transcription & translation are collectively referred to as _____ expression.

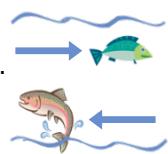
EXAMPLE: Central Dogma of Molecular Biology.

- DNA is *replicated*; RNA can be _____-transcribed into DNA, but transfer of *nucleic acid* to *protein* is *irreversible*.

PRACTICE: According to the central dogma, what is the intermediate molecule involved in the flow of information in a cell that should go in the blank? DNA → _____ → Proteins


- a) Ribosome.
- b) rRNA.
- c) mRNA.
- d) tRNA.

PRACTICE: The full process by which genotype becomes expressed as phenotype is called:


- a) Transcription.
- b) Translation.
- c) DNA Replication.
- d) Gene expression.

CONCEPT: INTRODUCTION TO TRANSCRIPTION

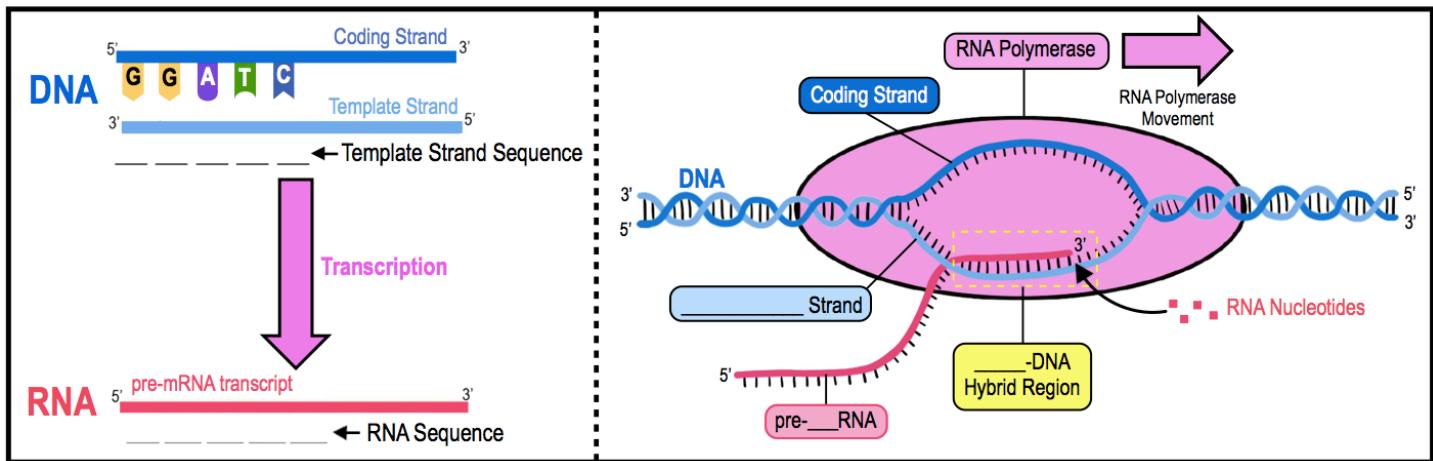
- Recall: **Transcription**: process that builds _____ using DNA within a gene as the coding template.
 - **Genes**: small units of _____ that encode a product (ex. protein).
- Specific sequences of DNA mark where transcription of a gene *begins & ends*:
 - 1 **Promoter**: DNA sequence where transcription _____ (site of RNA polymerase attachment).
 - _____ **Polymerase**: an enzyme that polymerizes/builds _____ from scratch (no primer needed).
 - 2 **Terminator**: DNA sequence where transcription _____.

- "_____ stream" refers to DNA sequences in the _____ direction of transcription.
- "_____ stream" refers to DNA sequences in the _____ direction of transcription.

PRACTICE: Which of the following is the best definition of a gene?

- An RNA molecule transcribed from a sequence of DNA.
- A stretch of DNA that can be transcribed.
- A sequence of DNA where the process of transcription ends.
- A sequence of DNA that encodes a product like an RNA or a protein.
- A sequence of DNA where the process of transcription begins.

PRACTICE: Which of the following statements is false?


- Transcription is the process that creates an RNA product from a sequence of DNA.
- RNA polymerase builds RNA molecules from a DNA template.
- A promoter is a sequence of DNA within a gene where RNA polymerase can begin transcription.
- RNA polymerase, like DNA polymerase, requires a primer to begin RNA synthesis.

CONCEPT: INTRODUCTION TO TRANSCRIPTION

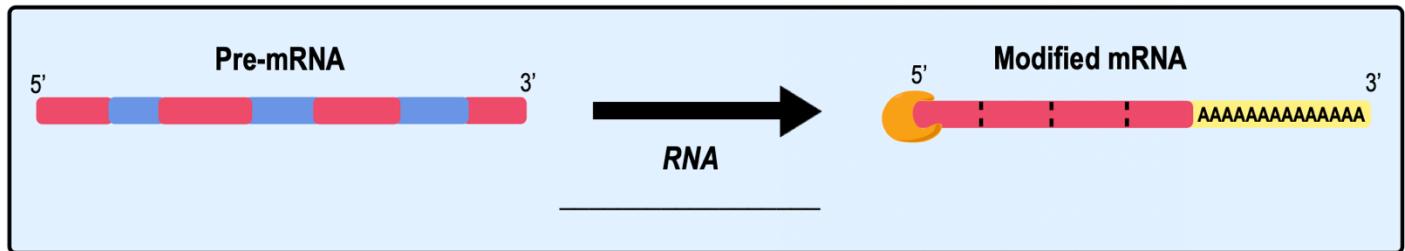
Overview of Transcription

- The 2 strands of DNA in a gene are referred to as: 1) _____ Strand & 2) _____ Strand
 - RNA molecules have same sequence as the _____ DNA strand (except replacing with).
- During transcription, RNA is built from _____ to _____ end by pairing *free RNA nucleotides* on a *DNA template*.
 - Nucleotide pairing occurs via *Watson & Crick Base-Pairing*: (or) &

EXAMPLE: Determine the sequence for the template DNA strand and mRNA transcript given the following coding strand.

PRACTICE: The strand of DNA that has the same sequence as the RNA molecule being created during transcription is the:

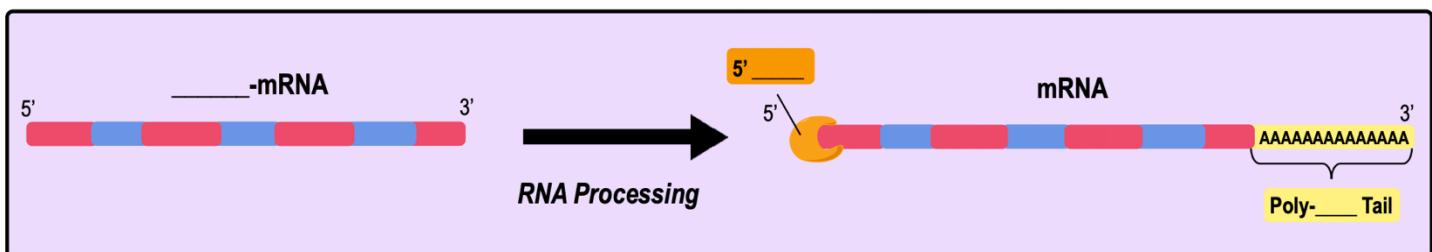
- Lagging strand.
- Leading strand.
- Coding strand.
- Template strand.
- Parent strand.


PRACTICE: Transcription is sometimes described as a process in which RNA is "copied" from the template strand of DNA.

This statement is potentially misleading _____.

- The nucleotides in RNA contain ribose and cannot be an exact copy of DNA.
- RNA molecules contain uracil instead of thymine and cannot be an exact copy of DNA.
- The RNA transcript has a sequence complementary to the template.
- The RNA transcript and the DNA template strand are antiparallel.
- All of the above.

CONCEPT: EUKARYOTIC RNA PROCESSING & SPLICING


- Recall: unlike prokaryotic mRNA, _____ mRNA requires further *modification* upon transcription termination.
 - _____-mRNA: eukaryotic mRNA *before* modification via *RNA processing & splicing*.
 - RNA Processing & Splicing**: eukaryotic processes converting pre-mRNA into mRNA that's ready for *translation*.

1) RNA Processing

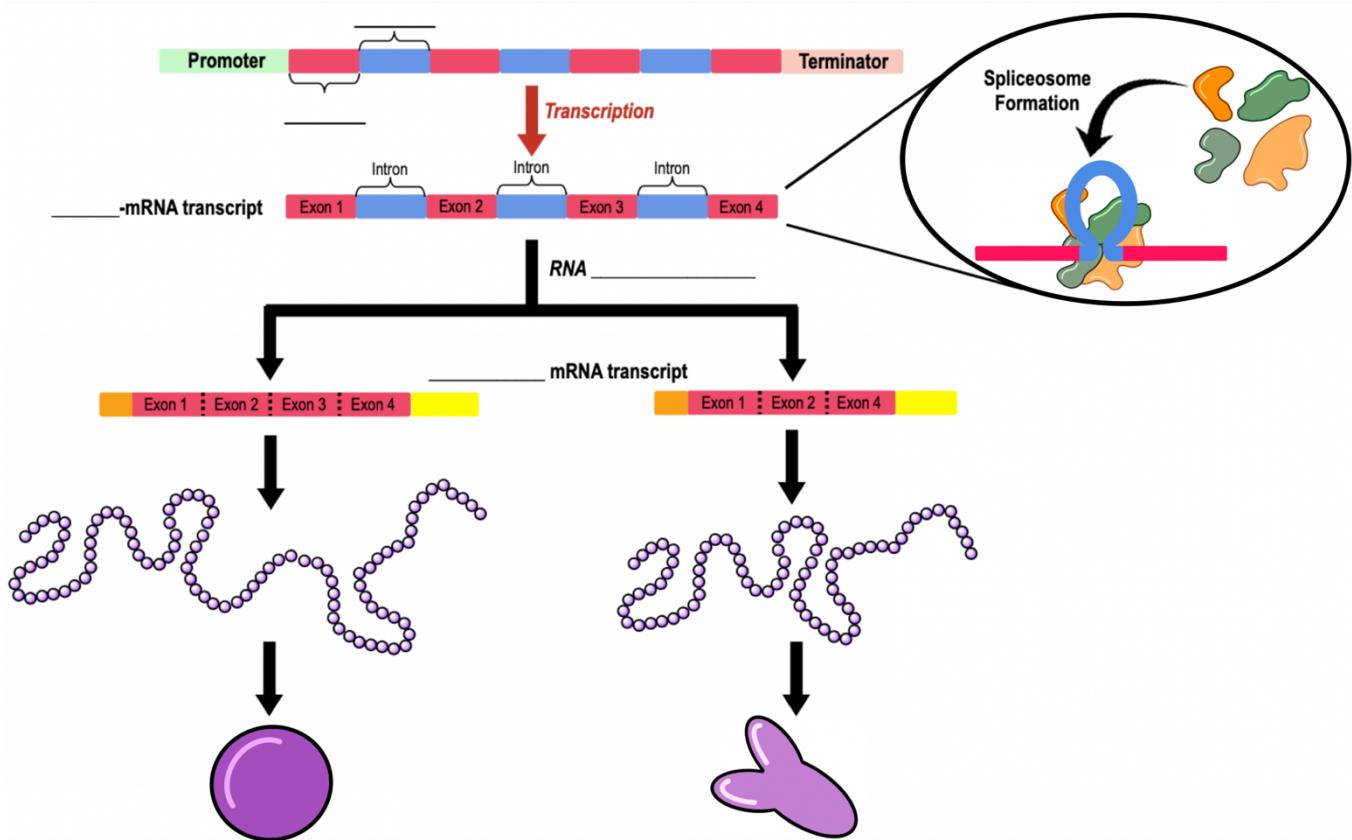
- Eukaryotic RNA processing involves _____ events that alter both ends of the pre-mRNA:
 - 1) Addition of a **5' cap** (modified guanine nucleotide) to the _____ end of the pre-mRNA.
 - 2) Addition of a **Poly-_____ Tail** (sequence of adenine nucleotides) to the _____ end of the pre-mRNA.
- **5' cap & poly-A tail** share several important *functions* including the following:
 - Facilitate _____ of mRNA from the nucleus to the cytoplasm.
 - _____ the mRNA from degradation by enzymes.
 - Help ribosomes _____ to the mRNA for translation.

EXAMPLE: pre-mRNA is processed into a mature mRNA transcript.

PRACTICE: Which of the following processes occurs in eukaryotic gene expression?

- a) mRNA, tRNA, and rRNA are translated.
- b) A cap is added to the 5' end of the mRNA.
- c) Adenine nucleotides are added to the 5' end of the mRNA.
- d) RNA polymerase requires tRNA to elongate the molecule.

PRACTICE: An mRNA poly-A tail:


- a) Prevents translation.
- b) Prevents transcription.
- c) Marks the RNA for degradation.
- d) Protects the mRNA from degradation.

CONCEPT: EUKARYOTIC RNA PROCESSING & SPLICING

2) RNA Splicing Creates Mature mRNA

- Within eukaryotic genes are regions called **introns** & **exons** that are transcribed into pre-mRNA.
- **RNA Splicing:** process **removing** some regions of pre-mRNA (**introns**) & **reconnecting** remaining regions (**exons**).
 - **introns:** noncoding regions of DNA/RNA that **intervene/interrupt** coding regions, but do NOT get translated.
 - **exons:** coding regions of DNA/RNA that are **expressed** & do get **translated**.
 - **Spliceosome:** large complex of RNA & protein responsible for removing introns.

EXAMPLE: The spliceosome removes introns from the pre-mRNA transcript after transcription.

- **Alternative RNA Splicing:** genes can be spliced in **multiple** ways to give **multiple** products.

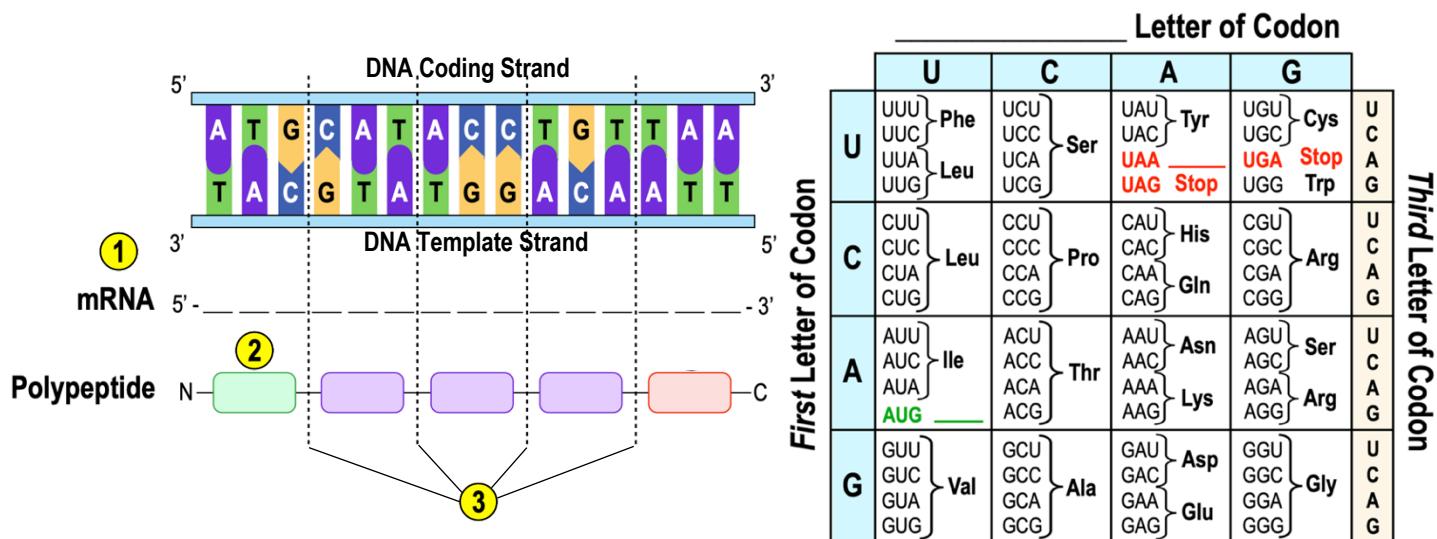
PRACTICE: The regions in DNA & RNA that encode actual gene products are known as:

- a) Terminators.
- b) mRNA.
- c) Exons.
- d) tRNA.
- e) Promoters.

CONCEPT: GENETIC CODE

• **Genetic Code:** a table that reveals how DNA/RNA encode the sequence of amino acids in a protein.

- Relatively universal across all organisms but can have some differences.
- Analyzes one _____ at a time, each which reveals one amino acid.


How to Use the Genetic Code

• Using the genetic code is a _____-step process:

- 1 Use the coding DNA sequence to reveal the mRNA sequence (replacing **T** with **U**).
- 2 Identify the _____-nucleotide codon frames within the mRNA transcript (including start & stop codons).
- 3 Identify the *amino acid* that corresponds with each codon until a _____ codon is reached.

• The genetic code shows the _____ letter (left side) _____ letter (top) and _____ letter (right side) of all possible codons.

EXAMPLE: Determine the polypeptide sequence from the following DNA sequence:

PRACTICE: The redundancy of the genetic code is a consequence of _____.

- a) Having more codons than amino acids.
- b) Having four different letters (As, Cs, Gs, and Us) in the codon alphabet.
- c) Having fewer codons than there are amino acids.
- d) Each codon having a single amino acid.

CONCEPT: GENETIC CODE

PRACTICE: A particular triplet of bases in the template strand of DNA is 5'-AGT-3'. What would be the corresponding codon for the mRNA that is transcribed?

- a) 3'-UCA-5'.
- c) 5'-TCA-3'.
- b) 3'-UGA-5'.
- d) 3'-ACU-5'.

PRACTICE: A particular triplet of bases in the coding sequence of DNA is AAA. The anticodon on the tRNA that binds the mRNA codon is _____.

- a) TTT.
- c) UUU.
- b) UUA.
- d) AAA.

Use the codon table on the right to answer the following questions:

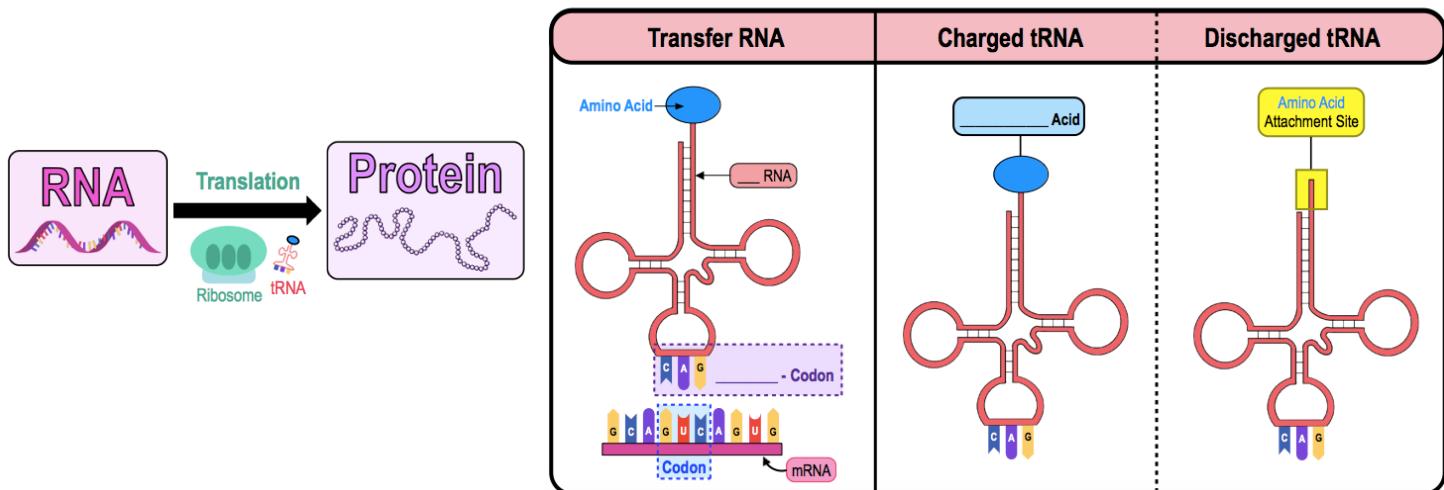
PRACTICE: Which of the following sequences of nucleotides are possible in the template strand of DNA that would code for the polypeptide sequence Phe–Leu–Ile–Val?

- a) 5'-TTG–CTA–CAG–TAG–3'.
- b) 5'-AUG–CTG–CAG–TAT–3'.
- c) 3'-AAA–AAT–ATA–ACA–5'.
- d) 3'-AAA–GAA–TAA–CAA–5'.

PRACTICE: What amino acid sequence will be generated, based on the following mRNA codon sequence?

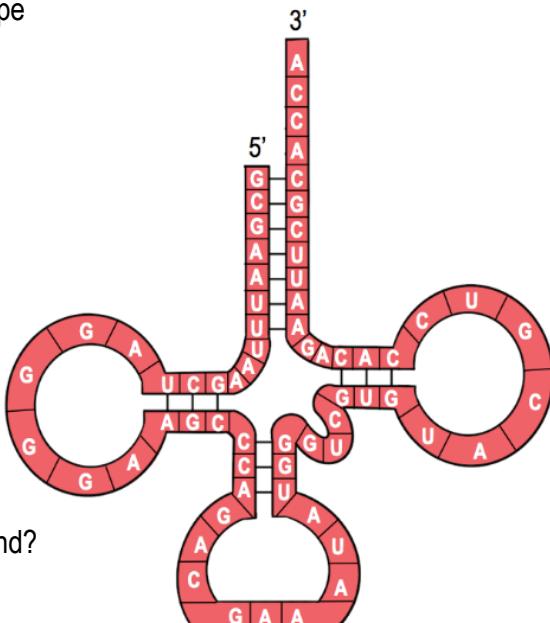
5'-AUG–UCU–UCG–UUA–UCC–UUG–3'

- a) Met–Arg–Glu–Arg–Glu–Arg.
- b) Met–Glu–Arg–Arg–Glu–Leu.
- c) Met–Ser–Leu–Ser–Leu–Ser.
- d) Met–Ser–Ser–Leu–Ser–Leu.


Second Letter of Codon				Third Letter of Codon	
First Letter of Codon	U	C	A	G	
U	UUU Phe UUC UUA UUG	UCU Ser UCC UCA UCG	UAU Tyr UAC UAA Stop UAG Stop	UGU Cys UGC UGA Stop UGG Trp	U C A G
	CUU CUC CUA CUG	CCU Pro CCC CCA CCG	CAU His CAC CAA CAG	CGU Arg CGC CGA CGG	U C A G
	AUU AUC AUA AUG Start	ACU Thr ACC ACA ACG	AAU Asn AAC AAA AAG	AGU Ser AGC AGA AGG	U C A G
	GUU GUC GUA GUG	GCU Val GCC GCA GCG	GAU Asp GAC GAA GAG	GGU Gly GGC GGA GGG	U C A G

Second Letter of Codon				Third Letter of Codon	
First Letter of Codon	U	C	A	G	
U	UUU Phe UUC UUA UUG	UCU Ser UCC UCA UCG	UAU Tyr UAC UAA Stop UAG Stop	UGU Cys UGC UGA Stop UGG Trp	U C A G
	CUU CUC CUA CUG	CCU Pro CCC CCA CCG	CAU His CAC CAA CAG	CGU Arg CGC CGA CGG	U C A G
	AUU AUC AUA AUG Start	ACU Thr ACC ACA ACG	AAU Asn AAC AAA AAG	AGU Ser AGC AGA AGG	U C A G
	GUU GUC GUA GUG	GCU Val GCC GCA GCG	GAU Asp GAC GAA GAG	GGU Gly GGC GGA GGG	U C A G

CONCEPT: INTRODUCTION TO TRANSLATION


- Recall: **Translation**: process that builds _____ using the encoded messages of mRNA.
 - **Ribosomes**: complex structure that builds _____ & performs _____.
 - **Transfer RNA (tRNA)**: RNA structure that carries/transfers _____ acids to ribosomes.
 - tRNA contains _____-codons that pair with mRNA codons during translation.
 - Charged tRNA is attached to an amino acid; Discharged tRNA is _____ attached to an amino acid.

EXAMPLE: The different variations of transfer RNA (tRNA) during translation.

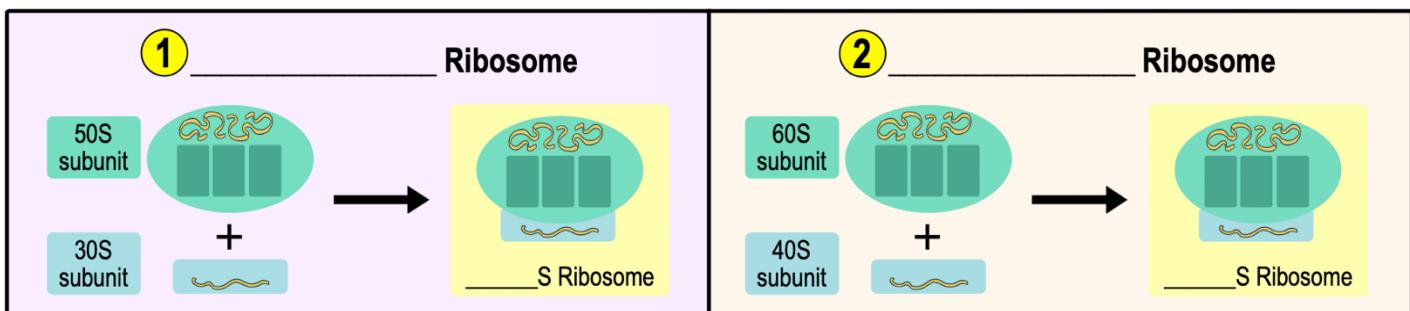
PRACTICE: What type of bonding is responsible for maintaining the shape of the tRNA molecule shown in the figure?

- Ionic bonding between phosphates.
- Hydrogen bonding between base pairs of nucleotides.
- Van der Waals interactions between hydrogen atoms.
- Peptide bonding between amino acids.

PRACTICE: The tRNA shown in the figure has its 3' end projecting beyond its 5' end. Which of the following processes will occur at this 3' end?

- The amino acid binds covalently.
- The excess nucleotides (ACCA) will be cleaved off at the ribosome.
- The small and large subunits of the ribosome will attach to it.
- These nucleotides represent the anti-codon.

CONCEPT: INTRODUCTION TO TRANSLATION

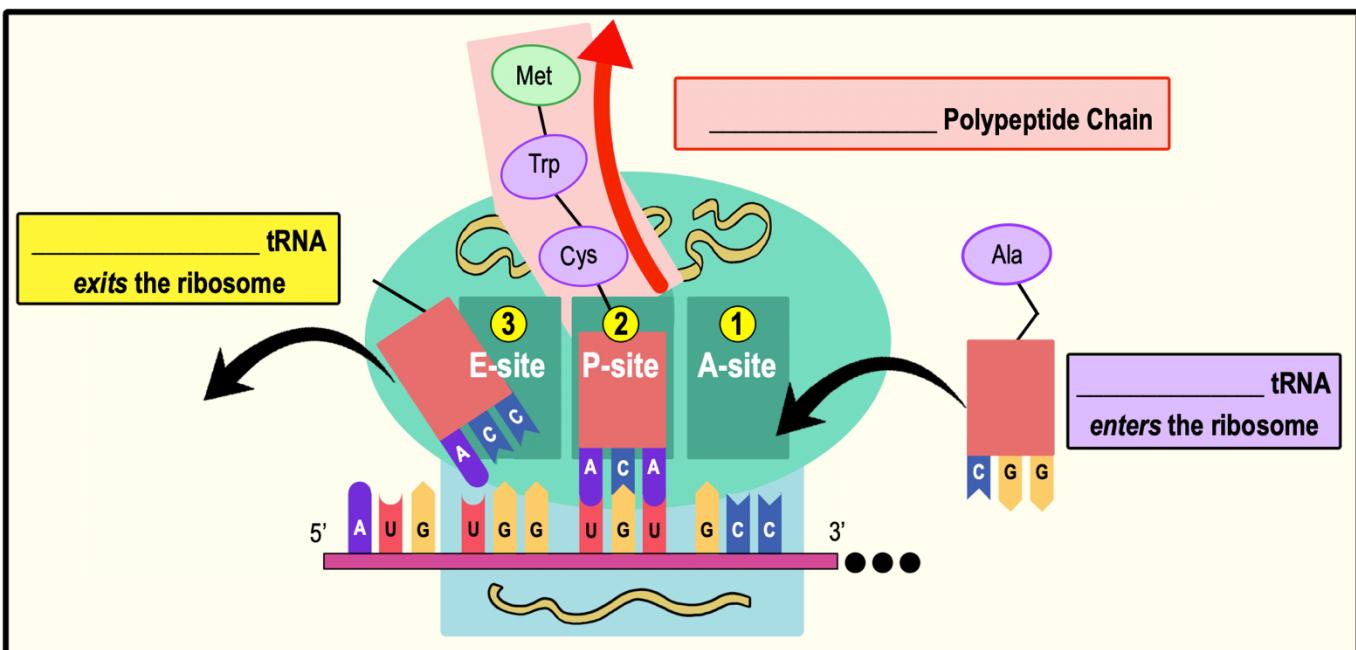

Ribosome Subunits

- Ribosomes consist of a small & large ribosomal _____, each made of proteins & rRNA.

1 Prokaryotes have _____ S ribosomes consisting of a large _____ S & small _____ S ribosomal subunits.

2 Eukaryotes have _____ S ribosomes consisting of a large _____ S & small _____ S ribosomal subunits.

EXAMPLE: Prokaryotic vs. Eukaryotic Ribosomal Subunits.



Ribosomal tRNA Binding Sites

- Each ribosome has _____ tRNA binding sites:

- 1 _____ aminoacyl-tRNA Binding Site (_____ -Site): holds the tRNA carrying the next amino acid to be added.
- 2 _____ peptidyl-tRNA Binding Site (_____ -Site): holds the tRNA carrying the **growing** polypeptide chain.
- 3 _____ exit Site (_____ -Site): discharged tRNAs leave the ribosome from this site.

EXAMPLE: Overview of tRNA binding sites.

CONCEPT: INTRODUCTION TO TRANSLATION

PRACTICE: A ribosome has three tRNA binding sites. Which answer matches the tRNA binding site with the correct function:

- a) The A-site acts as the loading site, holding the tRNA with the next amino acid in the polypeptide sequence.
- b) The E-site releases charged tRNA from the ribosome.
- c) The P-site is holding the growing strand of amino acids making up the polypeptide.
- d) A and B are correct.
- e) B and C are correct.
- f) A and C are correct.
- g) All of the above are correct.

PRACTICE: Which of the following statements concerning ribosomes are true?

- a) Several ribosomes are often attached to and translating the same mRNA.
- b) Ribosomes join amino acids to form a polypeptide.
- c) Ribosomes have a binding site for mRNA and three binding site for tRNA molecules.
- d) No protein synthesis within a cell would occur without ribosomes.
- e) All of the above statements are true.

PRACTICE: The direction of ribosome movement during translation is in the _____.

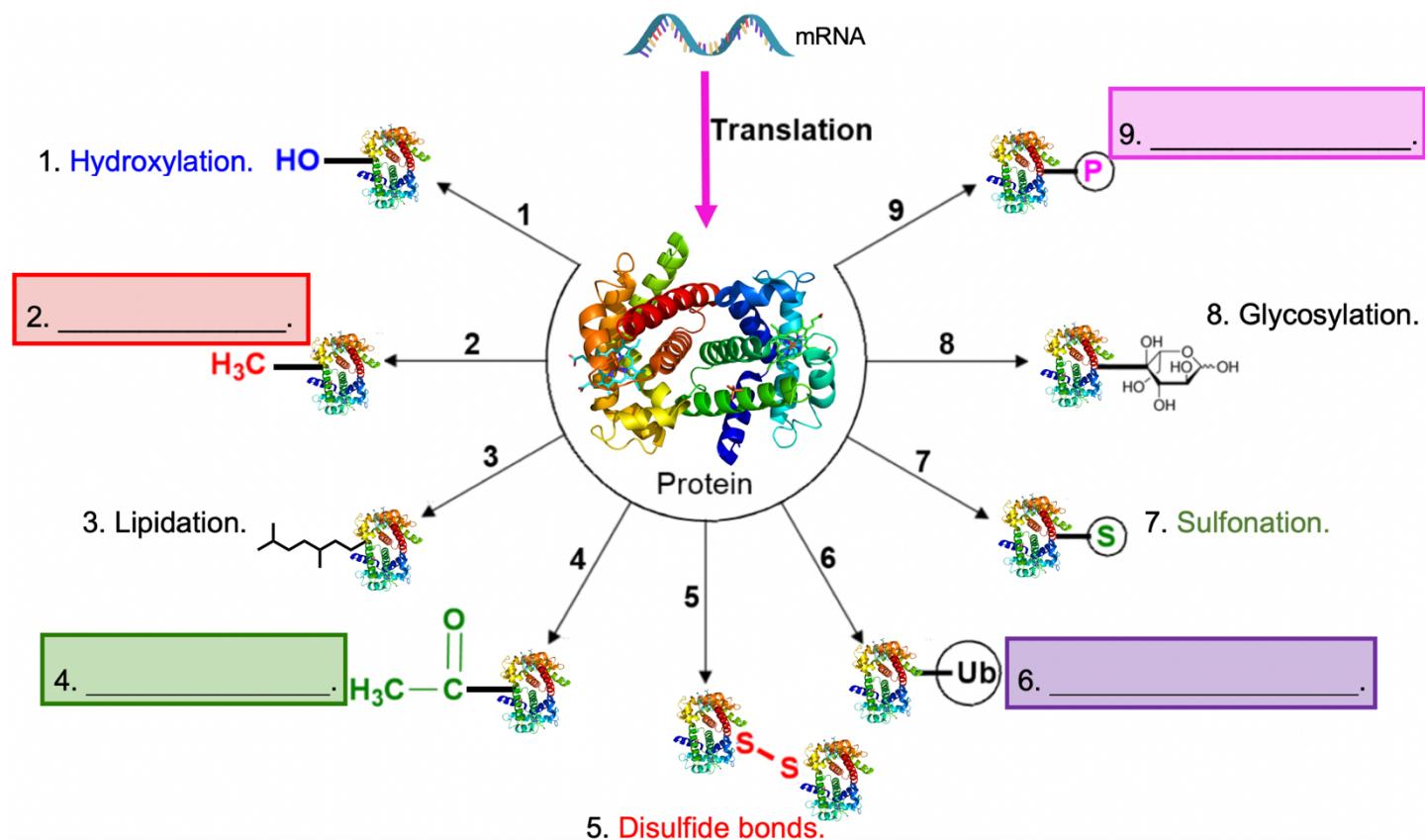
- a) 3' → 5' direction of DNA.
- b) 5' → 3' direction of tRNA.
- c) 3' → 5' direction of mRNA.
- d) 5' → 3' direction of mRNA.

PRACTICE: Many antibiotics work by blocking the function of ribosomes. Therefore, these antibiotics will:

- a) Block DNA synthesis in eukaryotic cells.
- b) Block protein synthesis in prokaryotes.
- c) Block RNA synthesis in prokaryotes.
- d) Block viral DNA in prokaryotes.
- e) Block protein synthesis in eukaryotes.

CONCEPT: POST TRANSLATIONAL MODIFICATION

- Recall: Translation is the cellular process of building _____ using the encoded messages of _____.
- _____-Translational Modifications (PTM): covalent alterations controlling protein activity _____ translation.
- There are many types of PTM, but some of the more common types include:


Methylation

Acetylation

Ubiquitination

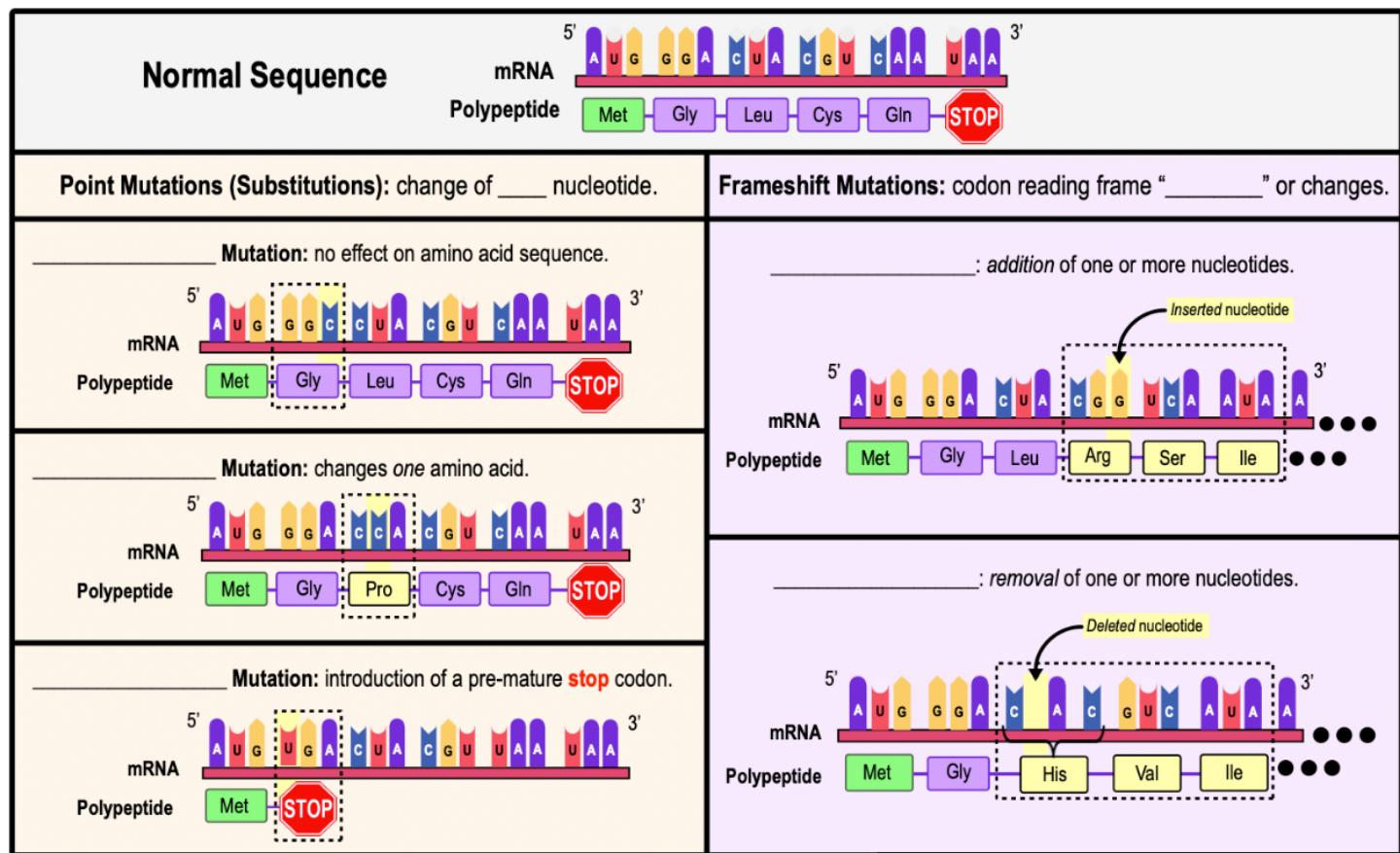
Phosphorylation

EXAMPLE: Post-Translational Modifications.

PRACTICE: Glycosylation is the post-translational addition of _____ to the protein.

- a) A carbohydrate.
- b) A lipid.
- c) A fat.
- d) A nucleotide.

PRACTICE: Which of the following is a reversible form of post-translational modification which can activate or deactivate a protein depending on the protein which is being modified?


- a) Glycosylation.
- b) Ubiquitination.
- c) Acetylation.
- d) Phosphorylation.

CONCEPT: MUTATIONS

- **Mutations:** permanent _____ in the _____ sequence.
 - Mutations in the DNA, can impact the _____ (via transcription), which can impact proteins (via translation).
 - Can either be harmful, beneficial or neutral in terms of their impact/result.
 - Can occur _____ or can be *induced* by environmental factors or chemical agents (*mutagens*).
- Mutations are largely responsible for the tremendous _____ found amongst organisms.

Types of Mutations

- There are several types of mutations including the following:

PRACTICE: Which of the following mutations, occurring just after the start codon in the mRNA is likely to have the most serious effects on the polypeptide product?

- Deletion of one codon.
- Deletion of one nucleotide.
- Insertion of three nucleotides.
- Substitution of one nucleotide.

CONCEPT: MUTATIONS

PRACTICE: A single base substitution is LEAST likely to be deleterious (dangerous) when the change results in ____.

- a) Replacement of a codon specifying a hydrophilic amino acid with a codon that specifies a hydrophobic amino acid.
- b) Replacement of a codon which codes for an amino acid with a stop codon.
- c) The change of a codon specifying a specific amino acid important for the active site of the protein.
- d) Replacement of a codon specifying an amino acid with a redundant codon specifying the same amino acid.

PRACTICE: A section of DNA has this base sequence: AGCGTTACCGT. A mutation in this DNA strand results in this base sequence: AGGCGTTACCGT. What type of mutation does this change represent?

- a) Frameshift mutation.
- b) A missense mutation.
- c) A nonsense mutation.
- d) A silent mutation.

PRACTICE: A nonsense mutation:

- a) Causes an incorrect amino acid to be inserted into a polypeptide chain.
- b) Causes synthesis of a polypeptide chain to be terminated prematurely.
- c) Prevents the start of translation.
- d) Only affects the mRNA code but does not affect the amino acid sequence of the polypeptide.