CONCEPT: OSMOSIS

•Osmosis: passive diffusion of a solvent (usually _____) across a semi-permeable membrane.

• Direction of water flow depends on _____: relative concentration of _____ dissolved in the solutions.

□ _____tonic solutions have _____ solute concentration.

□ tonic solutions have solute concentrations.

□ _____ *tonic* solutions have _____ *solute* concentrations.

EXAMPLE: Label the tonicity of the *outside* solution with respect to the solution inside the cell.

EXAMPLE: What is the tonicity of the outside solution in comparison to the inside of the cell?

- a) Hypotonic.
- b) Isotonic.
- c) Hypertonic.
- d) Electrotonic.

Direction of Osmosis

•Water will move from _____tonic to _____tonic solutions if the solutes cannot diffuse across the membrane.

□ Water moves towards the more concentrated solution of *solute* to dilute it until it becomes _____

Water still moves from higher concentrations of water to lower concentrations of water:

□ *Hypotonic solutions*: _____ H₂O concentration (but *lower* solute).

□ *Hypertonic solutions*: H₂O concentration (but *higher* solute).

CONCEPT: OSMOSIS

PRACTICE: Osmosis is best defined as the movement of:

- a) Water molecules across a semi-permeable membrane into a region of low solute concentration.
- Solute molecules from an area of high concentration to an area of lower concentration.
- Water molecules across a semi-permeable membrane into a region of high solute concentration.
- Water molecules inside a cell that can't be transported out.
- Solute molecules from an area of low concentration to an area of higher concentration.

PRACTICE: Which direction would you expect water to move across the cell membrane?

- a) Into the cell.
- b) Out of the cell.
- c) Into the cell and out of the cell at equal rates.
- d) Water will not move across the cell membrane.

Environmental Tonicity Affects Cells

& potentially lyse (burst). 1 Hyp tonic Environments: H₂O enters cells causing them to swell like a hipp_

□ Preferred by *plant* cells due to increased ______ *pressure* (water pressure on cell membrane).

tonic Environments: H₂O enters & exits the cell at ______ rates (preferred by animal cells).

_tonic Environments: H₂O exits cells causing them to dehydrate like a hyper-kid gets dehydrated. **3** Hyp___

CONCEPT: OSMOSIS

PRACTICE: Plants become turgid when placed in this type of solution:

- a) Hypotonic.
- b) Isotonic.
- c) Hypertonic.
- d) Megatonic.

PRACTICE: What would you expect to happen to the cell under the following conditions?

- a) The cell will swell.
- b) The cell will lyse.
- c) The cell will shrivel.
- d) The cell will stay the same.

