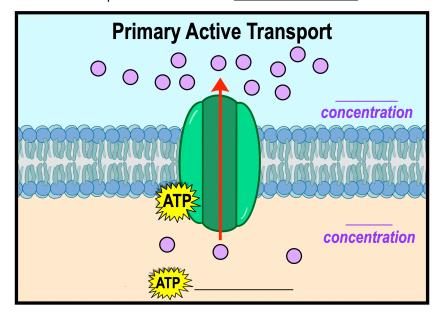

CONCEPT: ACTIVE TRANSPORT

•______ types of active transport that require ______ since molecules are transported against their gradient.

1 _____ Active Transport: directly driven by energy source (such as _____ hydrolysis).

2 _____ Active Transport: directly driven by another molecule's concentration _____



Primary Active Transport

• Primary Active Transport: an _____-driven process transporting molecules against their concentration gradient.

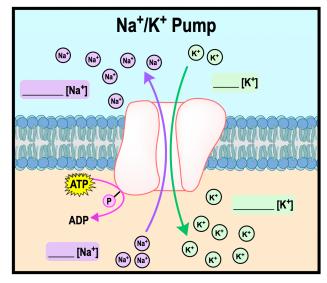
□ Directly driven by energy derived from ATP *hydrolysis*.

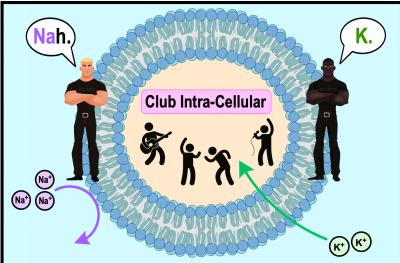
□ Used to *generate* & *maintain* important concentration ______ for cell survival.

EXAMPLE: What is the main difference between active transport and facilitated diffusion?

- a) Facilitated diffusion uses proteins, but active transport does not.
- b) Active transport uses ATP to power transport, but facilitated diffusion does not.
- c) Active transport occurs across the plasma membrane, but facilitated diffusion does not.
- d) Active transport and facilitated diffusion both use proteins to move substances against their concentration gradient.

CONCEPT: ACTIVE TRANSPORT


PRACTICE: The force driving simple diffusion is ______, while the energy source for active transport is _____.


- a) a concentration gradient; ADP.
- b) a concentration gradient; ATP hydrolysis.
- c) transmembrane pumps; an electrochemical gradient.
- d) phosphorylated carrier proteins; ATP.

Primary Active Transport: Na⁺/K⁺ Pump

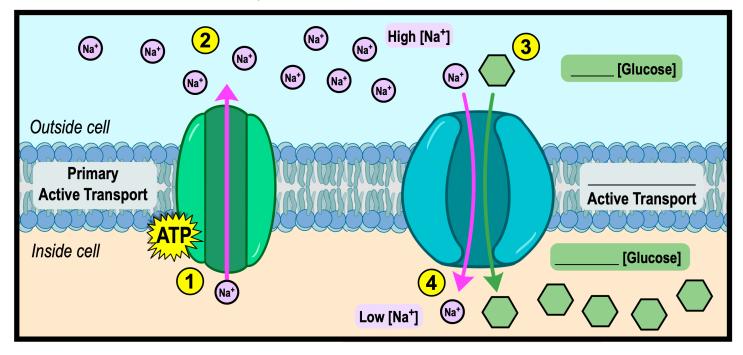
•An example of _____ active transport that moves Na⁺ & K⁺ ions in *opposite* directions (antiporter).

____ ions are exported while ____ ions are imported (pump-K+-in).

PRACTICE: A sodium-potassium pump ______.

- a) Transports 3 potassium ions out of a cell and 2 sodium ions into a cell and produces a molecule of ATP.
- b) Transports 3 sodium ions out of a cell and 2 potassium ions into a cell using energy from ATP hydrolysis.
- c) Transports 3 potassium ions out of a cell and 2 sodium ions into a cell using energy from ATP hydrolysis.
- d) Transports 3 sodium ions out of a cell and 2 potassium ions into a cell and generates an ATP in each cycle.

PRACTICE: Which of the following defines the type of transport by the sodium-potassium pump?


- a) Active transport through a symporter.
- b) Passive transport through a symporter.
- c) Active transport through an antiporter.
- d) Passive transport through an antiporter.

CONCEPT: ACTIVE TRANSPORT

Secondary Active Transport

●Recall: Secondary active transport is directly driven by a concentration	instead of ATP hydrolysis.
□ HOWEVER, its indirectly driven by Primary Active Transport (since concentra	tion gradients are <i>built</i> by PAT).
• steps to Na+-Glucose Secondary Active Transport:	
1 Na⁺ is transported <i>against</i> its concentration gradient using	_active transport.
2 Higher concentration of Na+ is generated on the of the cell.	
3 Glucose has a higher concentration the cell than outside.	
4 Na+ transportation its gradient "powers" Glucose transport	its gradient.

EXAMPLE: The Sodium-Glucose Cotransporter.

PRACTICE: How are primary and secondary active transport related?

- a) They both use ATP to move molecules.
- b) Primary active transport establishes a concentration gradient, but secondary active transport doesn't.
- c) Secondary active transport uses the concentration gradient established by primary active transport.
- d) Primary active transport moves one molecule, but secondary active transport moves two.
- e) None of the above.