CONCEPT: INTRODUCTION TO MEIOSIS

◆Before meiosis, a diploid cell must replicate its DNA & make proteins for cell division in ______.

•Meiosis starts with a *diploid* _____ genetically *diverse* ____ gametes.

□ **Germ Cells:** _____ cells that are the *precursor* for making *gametes* (sperm or egg).

EXAMPLE: The process of meiosis produces:

- a) 2 diverse haploid gamete cells.
- b) 2 identical diploid gamete cells.
- c) 4 identical diploid germ cells.
- d) 4 diverse haploid gamete cells.
- e) 4 identical diploid gamete cells.

PRACTICE: Which of the following steps must occur before Meiosis I in germ cells?

- a) The DNA of the haploid cell is replicated.
- b) The RNA of the diploid cell is replicated.
- c) The DNA of the diploid cells is replicated.
- d) The two cells need to be physically separated by cytokinesis.

CONCEPT: INTRODUCTION TO MEIOSIS

- Meiosis is broken down into _____ rounds of cell division:
 - 1 Meiosis I (Reductional Division): reduces ploidy by separating homologous ______.
 - □ *Diploid* (2*n*) germ cell divides into _____ haploid (*n*) daughter cells.
 - Meiosis II (Equational Division): maintains equal ploidy by separating sister_____
 - ☐ Haploid (n) cells from meiosis I divide producing _____ genetically diverse haploid (n) gametes.

EXAMPLE: Meiosis I & Meiosis II.

PRACTICE: In Meiosis II, _____ cells are divided into 4 _____ daughter cells.

a) Diploid; Haploid.

c) Haploid; Haploid.

b) Haploid; Diploid.

d) Diploid; Diploid.

CONCEPT: MEIOSIS I

•Meiosis I has	steps to Mitosis, but differs significantly in	I & I:		
□ In Metaphas	se I, homologous chromosomes are paired & aligned in rows in	the <i>middle</i> of the cell.		
□ In Anaphase	e I, chromosomes are separated while sister of	chromatids remain connected.		
□ After Telophase I, <i>cytokinesis</i> produces <i>haploid</i> (<i>n</i>) daughter cells that can then begin <i>Meiosis</i>				
EXAMPLE: Meiosis I.				
Interphase	Meiosis I	Cytokinesis		
G2 Phase	Prophase I Metaphase I Telophase I Diploid (2n)	Haploid (n)		

PRACTICE: A daughter cell is created by meiosis I and the first round of cytokinesis. This daughter cell is just beginning meiosis II. Which of the following is an appropriate description of this daughter cell's genetic contents?

- a) It has half the amount of DNA as the parent cell.
- b) It has half the chromosomes but twice the DNA of the parent cell.
- c) It has one-fourth the DNA and one-half the chromosomes as the parent cell.
- d) It is genetically identical to the parent cell.

CONCEPT: MEIOSIS II

- •In **Meiosis II**, each *haploid* cell produced in Meiosis I divides, forming _____ genetically *diverse*, haploid gametes.
- •In terms of the events that occur in each phase, **Meiosis II** is *almost* exactly the same as mitosis.
 - □ Similar to Mitosis, chromosomes align in _____ row in Metaphase II
 - □ Also, similar to Mitosis, *sister* _____ are divided in Anaphase II.

EXAMPLE: Meiosis II.

PRACTICE: During which of the following stages of meiosis do homologous chromosomes pair up and align along the metaphase plate of the cell?

- a) Metaphase I of meiosis.
- b) Telophase I of meiosis.

- c) Anaphase I of mitosis.
- d) Metaphase II of meiosis.

Genetic Variation During Meiosis

- ◆ Meiosis creates genetic diversity via _____ events: 1) Crossing-Over and 2) Independent Assortment.
- ◆ Crossing Over: Process in which pairs of homologous chromosomes exchange material.
 - Occurs during _____ I of Meiosis I.

 - ► Chiasma: _____ of crossing over.

- ◆ Independent Assortment: Pairs of homologous chromosomes are independently and randomly aligned.
 - Occurs during I of Meiosis I.
 - Results in enormous amount of possible genetic combinations.

	Possibility #1	Possibility #2	
phase I of Meiosis I	NH NH	XX XX	
Haploid daughter cells of I	N N N N N N N N N N N N N N N N N N N	THE REPORT OF THE PROPERTY OF	
daughter cells of Meiosis II			

EXAMPLE

Crossing over involves each of the following EXCEPT:

- a) The transfer of DNA between two non-sister chromatids.
- b) The transfer of DNA between two sister chromatids.
- c) Alignment of homologous chromosomes.
- d) All of the above are involved in crossing over.

PRACTICE

During which of the following processes does independent assortment of chromosomes occur?

a) In meiosis I only.

c) In mitosis and meiosis I.

b) In meiosis II only.

d) In mitosis I and meiosis II.