CONCEPT: MIXED INHIBITION

• Mixed inhibitors: have ______ binding since they bind either _____ enzyme **OR** _____-complex to decrease V₀.

 \Box Binding of a *mixed inhibitor* to E or ES-complex ultimately _____ conversion of **S** \rightarrow **P**.

□ No competition with **S** since mixed-I bind to _____ sites: alternative sites on **E** other than active site.

 \square Mixed inhibitors can bind with _____ affinities to the free enzyme & to the ES-complex ($K_I \neq K'_I$).

EXAMPLE: Mixed inhibition.

Mixed Inhibitor Effects

- •With mixed inhibitors, the K app may _____ increase OR decrease, but V app max is always _____.
 - 1) By Le Chatelier's Principle, magnitude of ____ & ____ dictate reaction shift ($\alpha > \alpha'$ shift left; $\alpha < \alpha'$ shift _____)
 - 2) Since **S** can't outcompete mixed inhibitors, effects are *NOT reversed* by _____ [**S**], so **V** app max is decreased.
 - 3) Since mixed inhibitors decrease V app max, kcat is also _____

ESI

CONCEPT: MIXED INHIBITION

Mixed Inhibition & Michaelis-Menten-Plots

- •Recall: mixed inhibitors bind to either free enzyme **OR** ES-complex, so _____ & ____ measures its degree of inhibition.
 - \square α' always _______ $\bigvee_{max}^{app} (\bigvee_{max}/\alpha')$, but *ratio* of α to α' can either increase or decrease $\bigvee_{m}^{app} (\alpha \bigvee_{max}/\alpha')$.
 - \Box Greater degree of inhibition to the free enzyme relative to ES-complex ($\alpha > \alpha'$) means K_m^{app} will be _____
 - \Box If $\alpha = \alpha'$, then the K_m^{app} is not changed & the inhibitor is called a ____ncompetitive inhibitor.

Mixed Inhibition & Lineweaver-Burk-Plots

- •Recall: mixed inhibitors always decrease the V_{max}^{app} but can either increase OR decrease the K_{m}^{app} .
 - □ *Mixed inhibitors* can change the slope of the line on a LW-Burk plot (slope = K_m/V_{max}) in _____ ways.
 - □ ___-intercept (1/V_{max}) on a LW-Burk-Plot always *increases*, but ___-intercept (-1/K_m) can decrease or increase.

Mixed Inhibitor
Lineweaver-Burk Equation:
$$\frac{1}{V_0} = \frac{\alpha K_m}{V_{max}} \left(\frac{1}{[S]} \right) + \frac{\alpha'}{V_{max}}$$

CONCEPT: MIXED INHIBITION

PRACTICE: Draw the representative lines for enzyme activity for an inhibitor with $\alpha > \alpha'$ and a separate line with $\alpha < \alpha'$.

PRACTICE: When a mixed inhibitor favors binding to the enzyme-substrate complex (ES) over the free enzyme (E), the apparent substrate affinity (apparent K_m) is:

- a) Greater than the substrate affinity for E (K_m)
- b) Less than the K_m
- c) Equal to the K_m

PRACTICE: Complete the chart by indicating with an "x" which kinetic parameters are affected by each factor.

Km	V_{max}	Both	Neither	Factor
				Competitive Inhibitor
				Mixed Inhibitor
				6M Urea
				Doubling [S]