CONCEPT: MIXED INHIBITION • Mixed inhibitors: have ______ binding since they bind either _____ enzyme **OR** _____-complex to decrease V₀. \Box Binding of a *mixed inhibitor* to E or ES-complex ultimately _____ conversion of **S** \rightarrow **P**. □ No competition with **S** since mixed-I bind to _____ sites: alternative sites on **E** other than active site. \square Mixed inhibitors can bind with _____ affinities to the free enzyme & to the ES-complex ($K_I \neq K'_I$). #### **EXAMPLE:** Mixed inhibition. ## **Mixed Inhibitor Effects** - •With mixed inhibitors, the K app may _____ increase OR decrease, but V app max is always _____. - 1) By Le Chatelier's Principle, magnitude of ____ & ____ dictate reaction shift ($\alpha > \alpha'$ shift left; $\alpha < \alpha'$ shift _____) - 2) Since **S** can't outcompete mixed inhibitors, effects are *NOT reversed* by _____ [**S**], so **V** app max is decreased. - 3) Since mixed inhibitors decrease V app max, kcat is also _____ **ESI** ### **CONCEPT: MIXED INHIBITION** ## **Mixed Inhibition & Michaelis-Menten-Plots** - •Recall: mixed inhibitors bind to either free enzyme **OR** ES-complex, so _____ & ____ measures its degree of inhibition. - \square α' always _______ $\bigvee_{max}^{app} (\bigvee_{max}/\alpha')$, but *ratio* of α to α' can either increase or decrease $\bigvee_{m}^{app} (\alpha \bigvee_{max}/\alpha')$. - \Box Greater degree of inhibition to the free enzyme relative to ES-complex ($\alpha > \alpha'$) means K_m^{app} will be _____ - \Box If $\alpha = \alpha'$, then the K_m^{app} is not changed & the inhibitor is called a ____ncompetitive inhibitor. ### Mixed Inhibition & Lineweaver-Burk-Plots - •Recall: mixed inhibitors always decrease the V_{max}^{app} but can either increase OR decrease the K_{m}^{app} . - □ *Mixed inhibitors* can change the slope of the line on a LW-Burk plot (slope = K_m/V_{max}) in _____ ways. - □ ___-intercept (1/V_{max}) on a LW-Burk-Plot always *increases*, but ___-intercept (-1/K_m) can decrease or increase. Mixed Inhibitor Lineweaver-Burk Equation: $$\frac{1}{V_0} = \frac{\alpha K_m}{V_{max}} \left(\frac{1}{[S]} \right) + \frac{\alpha'}{V_{max}}$$ # **CONCEPT: MIXED INHIBITION** **PRACTICE:** Draw the representative lines for enzyme activity for an inhibitor with $\alpha > \alpha'$ and a separate line with $\alpha < \alpha'$. **PRACTICE:** When a mixed inhibitor favors binding to the enzyme-substrate complex (ES) over the free enzyme (E), the apparent substrate affinity (apparent K_m) is: - a) Greater than the substrate affinity for E (K_m) - b) Less than the K_m - c) Equal to the K_m **PRACTICE:** Complete the chart by indicating with an "x" which kinetic parameters are affected by each factor. | Km | V_{max} | Both | Neither | Factor | |----|------------------|------|---------|-----------------------| | | | | | Competitive Inhibitor | | | | | | Mixed Inhibitor | | | | | | 6M Urea | | | | | | Doubling [S] |