CONCEPT: CATALYSIS

- Recall: Enzymes can lower _____ in several ways but the common theme is to _____ the transition state.
 □ Question: What are the different types of enzyme catalysis mechanisms?
 □ Enzyme catalysis is primarily conducted via ____ mechanisms:
- 1) catalysis. 2) catalysis. 3) ion catalysis. 4) catalysis.

PRACTICE: What is the common strategy for which enzyme catalysis occurs?

- a) Increasing the probability of product formation.
- c) Stabilization of the transition state.

b) Shifting the reaction equilibrium.

d) a and c are correct.

1) General Acid-Base Catalysis

- •Acid-Base Catalysis: when an _____ or base catalyzes a reaction via a _____ (H+) transfer.
 - □ Unstable charged _____ can be stabilized with H⁺ transfers.
- _____ main types of acid-base catalysis:
 - □ Specific Acid-Base Catalysis: only solvent (H₂O) serves as a H⁺ transfer source; sometimes this is too _____.
 - □ ______ Acid-Base Catalysis: the _____ active site mediates H+ transfers via any acid/base.

EXAMPLE: Specific vs. General Acid-Base Catalysis.

PRACTICE: Which of the following could not be the direct H+ transfer source for general acid-base catalysis?

- a) Lysine.
- b) Glutamic acid.
- c) Water.
- d) Tyrosine.
- e) Phenylalanine.

CONCEPT: CATALYSIS

PRACTICE: The catalytic mechanism below is an example of:

a) General acid catalysis.

b) Specific acid catalysis.

c) General base catalysis.

d) Specific base catalysis.

PRACTICE: Which of the following best applies to general acid-base catalysis?

- a) A proton is transferred between the enzyme and substrate.
- b) Uses nucleophilic functional groups.
- c) May take part in interactions involving Fe²⁺.
- d) Catalyst retains its original form after reaction occurs.
- e) Other than losing/gaining a H+, the catalyst retains its original form.
- f) a & d.
- g) a & e.