CONCEPT: HILL EQUATION

Cooperative Ligand-Binding in Allosteric Proteins

- ●In 1913, before any knowledge Hb's structure existed, Archibald ______ studied Hb's cooperative O₂-binding.
- •Recall: Coefficients in a reaction (#'s in front of molecules) are included into K_d as _______.
- From this, it SEEMS that for proteins with an "n" number of **L**-binding sites, the PL-reaction & equations for K_d & θ will be:

$$\mathbf{K}_{d}^{-} = \frac{[P][L]^{-}}{[PL_{-}]}$$

$$\theta = \mathbf{Y} = \frac{[L]^{-} + K_{d}^{-}}{[L]^{-} + K_{d}^{-}}$$

n = # of **L**-binding sites on a protein.

The Hill Equation

- The equation above for θ can be algebraically rearranged & reformatted to get the _____ Equation.
 - \Box This algebraically rearranged *Hill Equation* resembles the equation of a _____ (y = mx + b).
 - □ Hill Equation allows for the graphing of **PL**-Binding data on a *linear* plot called the Hill ______.

Equation of a Line: Hill Equation:
$$y = mX + b \qquad log(\frac{\theta}{1 - \theta}) = n log([1]) - n log(1)$$

Hill Constant (nн) & Cooperativity

- ●Contrary to what it SEEMS, experimental data shows the equations above must replace "n" with the _____ constant (nн).
 - □ Hill constant or Hill coefficient (nн): the degree of ______ of a L-binding reaction.
 - □ A protein's *affinity* for its ligand (K_d) is affected by *cooperativity* and therefore the Hill constant (nн).
 - □ nH is ALWAYS a value between 0 & the *maximum* number of **L**-binding sites on a protein (n): 0 ≤ _____ ≤ ____.

Hill Constant (n_H) $(0 \le n_H \le n)$	Degree of Cooperativity
n _H 1	cooperativity.
n _H 1	cooperativity.
n _H 1	cooperativity.

CONCEPT: HILL EQUATION

When $n_H = n$

- Hill constant (nH) can ONLY equal number of L-binding sites (n) under _____ circumstances:

 - 1 Protein displays NO cooperativity (ex. _____). 2 Protein ONLY follows Concerted Model of cooperativity.

Hb's n_H ≠ Hb's n

- •Recall: Hb's O₂-binding behavior is explained via a ______ of concerted & sequential models.
 - □ In its cooperative state, Hb's Hill constant ranges from 2.8 to 3 ($n_H \approx 10^{-2}$) even though it has 4 L-binding sites (n = 4).

EXAMPLE: Assuming Hb's $K_d = 26$ torr, calculate the fractional saturation of Hb at pO₂ = 100 torr & Hill coefficient (n_H) = 3.

- a) 1.4
- b) 0.59
- c) 0.98

PRACTICE: At a CO₂ partial pressure of 5 torr, the p_{50} value for hemoglobin is 26 torr. What is the fractional saturation when $n_H = 3$ and $pO_2 = 25$ torr, a typical venous oxygen partial pressure?

- d) 1.1
- c) 0.12
- e) 0.47

- e) 0.68
- d) 0.88

PRACTICE: What is Hb's fractional saturation when $p_{50} = 26$ torr, $n_H = 3$, and $pO_2 = 100$ torr, a typical pO_2 in the lungs?

- a) 0.65
- c) 0.89
- e) 0.33

- b) 1.6
- d) 0.98